In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array
This paper presents a machine-learning classifier where computations are performed in a standard 6T SRAM array, which stores the machine-learning model. Peripheral circuits implement mixed-signal weak classifiers via columns of the SRAM, and a training algorithm enables a strong classifier through b...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 52; no. 4; pp. 915 - 924 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a machine-learning classifier where computations are performed in a standard 6T SRAM array, which stores the machine-learning model. Peripheral circuits implement mixed-signal weak classifiers via columns of the SRAM, and a training algorithm enables a strong classifier through boosting and also overcomes circuit nonidealities, by combining multiple columns. A prototype 128 × 128 SRAM array, implemented in a 130-nm CMOS process, demonstrates ten-way classification of MNIST images (using image-pixel features downsampled from 28 × 28 = 784 to 9 × 9 = 81, which yields a baseline accuracy of 90%). In SRAM mode (bit-cell read/write), the prototype operates up to 300 MHz, and in classify mode, it operates at 50 MHz, generating a classification every cycle. With accuracy equivalent to a discrete SRAM/digital-MAC system, the system achieves ten-way classification at an energy of 630 pJ per decision, 113× lower than a discrete system with standard training algorithm and 13× lower than a discrete system with the proposed training algorithm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2016.2642198 |