Physical Activity Recognition From Smartphone Accelerometer Data for User Context Awareness Sensing
Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone accelerometer data. Activity classification was done on a remote server through the use of machine learning algorithms, data was received from the...
Saved in:
Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 47; no. 12; pp. 3142 - 3149 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone accelerometer data. Activity classification was done on a remote server through the use of machine learning algorithms, data was received from the smartphone wirelessly. The smartphone was placed in the subject's trouser pocket while data was gathered. A large sample set was used to train the classifiers and then a test set was used to verify the algorithm accuracies. Ten different classifier algorithm configurations were evaluated to determine which performed best overall, as well as, which algorithms performed best for specific activity classes. Based on the results obtained, very accurate predictions could be made for offline activity recognition. The kNN and kStar algorithms both obtained an overall accuracy of 99.01%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2168-2216 2168-2232 |
DOI: | 10.1109/TSMC.2016.2562509 |