Physical Activity Recognition From Smartphone Accelerometer Data for User Context Awareness Sensing

Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone accelerometer data. Activity classification was done on a remote server through the use of machine learning algorithms, data was received from the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 47; no. 12; pp. 3142 - 3149
Main Authors Wannenburg, Johan, Malekian, Reza
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone accelerometer data. Activity classification was done on a remote server through the use of machine learning algorithms, data was received from the smartphone wirelessly. The smartphone was placed in the subject's trouser pocket while data was gathered. A large sample set was used to train the classifiers and then a test set was used to verify the algorithm accuracies. Ten different classifier algorithm configurations were evaluated to determine which performed best overall, as well as, which algorithms performed best for specific activity classes. Based on the results obtained, very accurate predictions could be made for offline activity recognition. The kNN and kStar algorithms both obtained an overall accuracy of 99.01%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2016.2562509