LINEAR SYSTEMS ON IRREGULAR VARIETIES

Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{P...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Institute of Mathematics of Jussieu Vol. 19; no. 6; pp. 2087 - 2125
Main Authors Barja, Miguel Ángel, Pardini, Rita, Stoppino, Lidia
Format Journal Article Publication
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.11.2020
Subjects
Online AccessGet full text
ISSN1474-7480
1475-3030
DOI10.1017/S1474748019000069

Cover

Loading…
More Information
Summary:Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element. We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of $L$ on $T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$. Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly. As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$, $L$ or $a$.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1474-7480
1475-3030
DOI:10.1017/S1474748019000069