Correcting prevalence estimation for biased sampling with testing errors
Sampling for prevalence estimation of infection is subject to bias by both oversampling of symptomatic individuals and error‐prone tests. This results in naïve estimators of prevalence (ie, proportion of observed infected individuals in the sample) that can be very far from the true proportion of in...
Saved in:
Published in | Statistics in medicine Vol. 42; no. 26; pp. 4713 - 4737 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Wiley Subscription Services, Inc
20.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sampling for prevalence estimation of infection is subject to bias by both oversampling of symptomatic individuals and error‐prone tests. This results in naïve estimators of prevalence (ie, proportion of observed infected individuals in the sample) that can be very far from the true proportion of infected. In this work, we present a method of prevalence estimation that reduces both the effect of bias due to testing errors and oversampling of symptomatic individuals, eliminating it altogether in some scenarios. Moreover, this procedure considers stratified errors in which tests have different error rate profiles for symptomatic and asymptomatic individuals. This results in easily implementable algorithms, for which code is provided, that produce better prevalence estimates than other methods (in terms of reducing and/or removing bias), as demonstrated by formal results, simulations, and on COVID‐19 data from the Israeli Ministry of Health. |
---|---|
AbstractList | Sampling for prevalence estimation of infection is subject to bias by both oversampling of symptomatic individuals and error‐prone tests. This results in naïve estimators of prevalence (ie, proportion of observed infected individuals in the sample) that can be very far from the true proportion of infected. In this work, we present a method of prevalence estimation that reduces both the effect of bias due to testing errors and oversampling of symptomatic individuals, eliminating it altogether in some scenarios. Moreover, this procedure considers stratified errors in which tests have different error rate profiles for symptomatic and asymptomatic individuals. This results in easily implementable algorithms, for which code is provided, that produce better prevalence estimates than other methods (in terms of reducing and/or removing bias), as demonstrated by formal results, simulations, and on COVID‐19 data from the Israeli Ministry of Health. |
Author | Rao, J. Sunil Zhao, Chen Hössjer, Ola Zhou, Lili Díaz‐Pachón, Daniel Andrés |
Author_xml | – sequence: 1 givenname: Lili surname: Zhou fullname: Zhou, Lili organization: Division of Biostatistics University of Miami Miami Florida USA – sequence: 2 givenname: Daniel Andrés orcidid: 0000-0001-6281-1720 surname: Díaz‐Pachón fullname: Díaz‐Pachón, Daniel Andrés organization: Division of Biostatistics University of Miami Miami Florida USA – sequence: 3 givenname: Chen surname: Zhao fullname: Zhao, Chen organization: Division of Biostatistics University of Miami Miami Florida USA – sequence: 4 givenname: J. Sunil surname: Rao fullname: Rao, J. Sunil organization: Division of Biostatistics University of Minnesota Minneapolis Minnesota USA – sequence: 5 givenname: Ola surname: Hössjer fullname: Hössjer, Ola organization: Department of Mathematics Stockholm University Stockholm Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-225644$$DView record from Swedish Publication Index |
BookMark | eNpdkV1LwzAUhoNMcJuCP6HgjRd2niRN01yO-TFh4I16G7I2mRltU5PW4b83ZaLguTkceHh5Du8MTVrXaoQuMSwwALkNtlmIomAnaIpB8BQIKyZoCoTzNOeYnaFZCHsAjBnhU7ReOe912dt2l3Ref6pat6VOdOhto3rr2sQ4n2ytCrpKgmq6eiQPtn9P-hGKh_be-XCOTo2qg7742XP0-nD_slqnm-fHp9Vyk5aUiT5VUDGgOcGkolgxylQcU_GKC2EE0C0DXWScAtMiyzNDqSlzQbhhuCSYKTpHN8fccNDdsJWdj6L-Szpl5Z19W0rndzIMkhCWZ1nEr494593HEI1lY0Op61q12g1BkiKHDBilLKJX_9C9G3wbn4kU56yAKPAXWHoXgtfm1wCDHBuQsQE5NkC_AZ1Hegs |
CitedBy_id | crossref_primary_10_3847_1538_4365_ad2c88 crossref_primary_10_1109_TIT_2023_3327399 |
Cites_doi | 10.1093/oxfordjournals.aje.a112510 10.5048/BIO‐C.2018.4 10.3390/e24101469 10.1186/s12874‐020‐01081‐0 10.5048/BIO‐C.2020.4 10.1016/j.jtbi.2020.110556 10.3390/e24101323 10.1109/ICSMC.2009.5346119 10.1007/978-3-540-87987-9_8 10.1103/PhysRev.106.620 10.1002/rmv.2200 10.1016/S2214‐109X(20)30074‐7 10.1155/2011/608719 10.1038/s41746‐020‐00372‐6 10.1109/TSMC.2021.3056669 10.20965/jaciii.2010.p0475 10.1038/s41467‐021‐22082‐7 10.1109/TSMCA.2009.2025027 10.1109/SMC.2017.8122651 10.1371/journal.pone.0242958 10.1093/jssam/smac029 10.5048/BIO‐C.2020.3 10.1016/j.spl.2020.108742 10.3899/jrheum.130675 10.1109/TIT.2023.3327399 10.1109/4235.585893 10.1257/aer.20180310 10.1016/S2589‐7500(20)30133‐3 10.1002/asmb.2430 10.1109/TPAMI.2022.3195462 10.1007/s10701‐022‐00650‐1 10.1002/j.1538-7305.1948.tb01338.x 10.1016/j.epidem.2018.01.002 10.1088/1475‐7516/2021/07/020 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION K9. 7X8 ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
DOI | 10.1002/sim.9885 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 4737 |
ExternalDocumentID | oai_DiVA_org_su_225644 10_1002_sim_9885 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAWTL AAXRX AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT K9. 7X8 .Y3 31~ 53G AASGY ABAVF ABEML ACBWZ ACSCC ADTPV AFFNX AOWAS ASPBG AVWKF AZFZN BDRZF D8T DG7 DUUFO EBD EJD EMOBN EX3 FEDTE HF~ HVGLF LW6 M67 RIWAO RJQFR SAMSI SV3 WOW YHZ ZGI ZXP ZZAVC |
ID | FETCH-LOGICAL-c359t-a0d5036212d31a535aaaafd7d799f903b50e847305e9464f33fc6927f51c215a3 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Aug 23 23:56:14 EDT 2024 Fri Aug 16 01:26:39 EDT 2024 Thu Oct 10 20:19:14 EDT 2024 Fri Aug 23 02:23:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-a0d5036212d31a535aaaafd7d799f903b50e847305e9464f33fc6927f51c215a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6281-1720 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-225644 |
PQID | 2877580215 |
PQPubID | 48361 |
PageCount | 25 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_225644 proquest_miscellaneous_2860405335 proquest_journals_2877580215 crossref_primary_10_1002_sim_9885 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-20 |
PublicationDateYYYYMMDD | 2023-11-20 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Statistics in medicine |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 Carabaña JM (e_1_2_12_26_1) 2020; 94 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_21_1 Cover TM (e_1_2_12_39_1) 2006 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 Barbier J (e_1_2_12_12_1) 2020 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – ident: e_1_2_12_24_1 doi: 10.1093/oxfordjournals.aje.a112510 – ident: e_1_2_12_34_1 doi: 10.5048/BIO‐C.2018.4 – start-page: 99 year: 2020 ident: e_1_2_12_12_1 article-title: High‐dimensional inference: a statistical mechanics perspective publication-title: Ithaca Viaggio Nella Sci contributor: fullname: Barbier J – ident: e_1_2_12_13_1 doi: 10.3390/e24101469 – ident: e_1_2_12_25_1 doi: 10.1186/s12874‐020‐01081‐0 – ident: e_1_2_12_38_1 doi: 10.5048/BIO‐C.2020.4 – ident: e_1_2_12_11_1 doi: 10.1016/j.jtbi.2020.110556 – ident: e_1_2_12_41_1 doi: 10.3390/e24101323 – ident: e_1_2_12_30_1 doi: 10.1109/ICSMC.2009.5346119 – volume: 94 year: 2020 ident: e_1_2_12_26_1 article-title: Datos de encuesta Para estimar la prevalencia de COVID‐19. Un estudio piloto en Madrid capital publication-title: Rev Esp Salud Publica contributor: fullname: Carabaña JM – ident: e_1_2_12_9_1 doi: 10.1007/978-3-540-87987-9_8 – ident: e_1_2_12_17_1 doi: 10.1103/PhysRev.106.620 – ident: e_1_2_12_27_1 doi: 10.1002/rmv.2200 – ident: e_1_2_12_4_1 doi: 10.1016/S2214‐109X(20)30074‐7 – ident: e_1_2_12_23_1 doi: 10.1155/2011/608719 – ident: e_1_2_12_19_1 doi: 10.1038/s41746‐020‐00372‐6 – volume-title: Elements of Information Theory year: 2006 ident: e_1_2_12_39_1 contributor: fullname: Cover TM – ident: e_1_2_12_20_1 – ident: e_1_2_12_22_1 doi: 10.1109/TSMC.2021.3056669 – ident: e_1_2_12_32_1 doi: 10.20965/jaciii.2010.p0475 – ident: e_1_2_12_8_1 – ident: e_1_2_12_5_1 doi: 10.1038/s41467‐021‐22082‐7 – ident: e_1_2_12_31_1 doi: 10.1109/TSMCA.2009.2025027 – ident: e_1_2_12_33_1 doi: 10.1109/SMC.2017.8122651 – ident: e_1_2_12_21_1 doi: 10.1371/journal.pone.0242958 – ident: e_1_2_12_10_1 doi: 10.1093/jssam/smac029 – ident: e_1_2_12_18_1 doi: 10.5048/BIO‐C.2020.3 – ident: e_1_2_12_40_1 doi: 10.1016/j.spl.2020.108742 – ident: e_1_2_12_29_1 doi: 10.3899/jrheum.130675 – ident: e_1_2_12_28_1 doi: 10.1109/TIT.2023.3327399 – ident: e_1_2_12_35_1 doi: 10.1109/4235.585893 – ident: e_1_2_12_7_1 doi: 10.1257/aer.20180310 – ident: e_1_2_12_6_1 doi: 10.1016/S2589‐7500(20)30133‐3 – ident: e_1_2_12_36_1 doi: 10.1002/asmb.2430 – ident: e_1_2_12_37_1 doi: 10.1109/TPAMI.2022.3195462 – ident: e_1_2_12_16_1 doi: 10.1007/s10701‐022‐00650‐1 – ident: e_1_2_12_3_1 – ident: e_1_2_12_14_1 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: e_1_2_12_2_1 doi: 10.1016/j.epidem.2018.01.002 – ident: e_1_2_12_15_1 doi: 10.1088/1475‐7516/2021/07/020 |
SSID | ssj0011527 |
Score | 2.482842 |
Snippet | Sampling for prevalence estimation of infection is subject to bias by both oversampling of symptomatic individuals and error‐prone tests. This results in naïve... Sampling for prevalence estimation of infection is subject to bias by both oversampling of symptomatic individuals and error-prone tests. This results in naïve... |
SourceID | swepub proquest crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 4713 |
SubjectTerms | active information bias correction COVID-19 maximum entropy prevalence sampling sampling bias testing errors |
Title | Correcting prevalence estimation for biased sampling with testing errors |
URI | https://www.proquest.com/docview/2877580215 https://search.proquest.com/docview/2860405335 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-225644 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNAkhKCAGAxkJHiqUtI4l_pxtJsqtA00tajai-XEzhppS1CbvOw38KM5J3YuaAgx-hClbuRUPp_PxT7nMyEflB-mU5nARPJ15PiKp840lIGjsEzTVTHX9dmAZ-fhYuV_WQfrweBnL2upKuNxcvvHupL_kSq0gVyxSvYekm07hQa4B_nCFSQM13-S8QyP1khKU1COvN31NEXejJsuhzDOwFCp0U5i7ni78ooPwRe93RZ2P8d6qOh9WvLmLL-z9X65KSoTyl9n3SI3VqnXqZFm2303mtc3c3nb5lJ8k8kGGz-zFo0zWxhyuZFFm8gDmizPrkcXtsmuR3gMC_M89x5ar6fhcP84jEw951gbDewiPaxn-NwbFe17PSh6fYULtpX1jLcfGQqZO4bBEM3uspsxn06Dzvg1G_7nX8XJ6vRULI_XywfkoQdqCxME5xctGdmkOQC4-dMNlbHrfWr6_d256UUsfRba2nNZPiVPbMhBjwx-npGBzofk0ZmV7JA8Nku31FSkDcl-B4HnZNFhjHYYox3GKGCMGozRBmMUMUYtxqjB2AuyOjlezhaOPX3DSVjAS0e6KkD3ZuIpNpEBCyR8UhWpiPOUuywOXA2uDdgLzf3QTxlLk5B7URpMEvAjJXtJ9vIi168IjcEpDGFI0X31VRJKrWKsuFY8jmPo7YC8b4ZN_DAkK8LQaXsChlbg0B6Qw2Y8hZ2COwHhPsS76LZCF-3PoCBx10vmuqjwmRAMFUQ18MxHI4f2JcitPs--H4lieyV2lQDjBvHB67-_6g3Z73B_SPbKbaXfgmdaxu9qwPwCBTKP4Q |
link.rule.ids | 230,315,783,787,888,27938,27939 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correcting+prevalence+estimation+for+biased+sampling+with+testing+errors&rft.jtitle=Statistics+in+medicine&rft.au=Zhou%2C+Lili&rft.au=Daniel+Andr%C3%A9s+D%C3%ADaz%E2%80%90Pach%C3%B3n&rft.au=Chen%2C+Zhao&rft.au=J+Sunil+Rao&rft.date=2023-11-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=26&rft.spage=4713&rft.epage=4737&rft_id=info:doi/10.1002%2Fsim.9885&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |