Correcting prevalence estimation for biased sampling with testing errors
Sampling for prevalence estimation of infection is subject to bias by both oversampling of symptomatic individuals and error‐prone tests. This results in naïve estimators of prevalence (ie, proportion of observed infected individuals in the sample) that can be very far from the true proportion of in...
Saved in:
Published in | Statistics in medicine Vol. 42; no. 26; pp. 4713 - 4737 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Wiley Subscription Services, Inc
20.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Sampling for prevalence estimation of infection is subject to bias by both oversampling of symptomatic individuals and error‐prone tests. This results in naïve estimators of prevalence (ie, proportion of observed infected individuals in the sample) that can be very far from the true proportion of infected. In this work, we present a method of prevalence estimation that reduces both the effect of bias due to testing errors and oversampling of symptomatic individuals, eliminating it altogether in some scenarios. Moreover, this procedure considers stratified errors in which tests have different error rate profiles for symptomatic and asymptomatic individuals. This results in easily implementable algorithms, for which code is provided, that produce better prevalence estimates than other methods (in terms of reducing and/or removing bias), as demonstrated by formal results, simulations, and on COVID‐19 data from the Israeli Ministry of Health. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0277-6715 1097-0258 1097-0258 |
DOI: | 10.1002/sim.9885 |