Blockchain-Enabled Trustworthy Group Communications in UAV Networks

Unmanned Aerial Vehicles (UAVs) are increasingly deployed in networked environments, such as places of mass gatherings, smart cities and smart nations. For example, UAVs can be deployed to detect violations of lockdown, stay-at-home or social / physical distancing directives during pandemics (e.g. C...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 22; no. 7; pp. 4118 - 4130
Main Authors Gai, Keke, Wu, Yulu, Zhu, Liehuang, Choo, Kim-Kwang Raymond, Xiao, Bin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Unmanned Aerial Vehicles (UAVs) are increasingly deployed in networked environments, such as places of mass gatherings, smart cities and smart nations. For example, UAVs can be deployed to detect violations of lockdown, stay-at-home or social / physical distancing directives during pandemics (e.g. COVID-19). There are, however, security and privacy considerations in such deployments. To achieve secure and efficient authentication of UAVs, solutions such as those based on Point-to-Point (P2P) or a Point- to-Multipoint (P2M) communications have been proposed in the literature. In this article, we present a novel blockchain-based technique to support multi-party authentication to facilitate trustworthy group communications. Specifically, this allows us to provide secure P2P wireless communications and trusted group communication management for UAV networks, while ensuring service efficiency. Evaluation findings from both real-world implementation and simulations demonstrate the utility of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2020.3015862