Rank-Based Local Self-Similarity Descriptor for Optical-to-SAR Image Matching

Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor cal...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 17; no. 10; pp. 1742 - 1746
Main Authors Xiong, Xin, Xu, Qing, Jin, Guowang, Zhang, Hongmin, Gao, Xin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor called rank-based local self-similarity (RLSS) for optical-to-SAR image template matching. The RLSS descriptor is an improved version of the local self-similarity (LSS) descriptor, inspired by Spearman's rank correlation coefficient in statistics. It can describe the local shape properties of an image in a discriminable manner. To further improve the discriminability, a dense RLSS (DRLSS) descriptor is formed with a dense scheme by integrating the RLSS descriptors for multiple local regions into a dense sampling grid. Experimental results conducted based on the optical and SAR image pairs demonstrated that the proposed descriptor was robust to nonlinear radiometric differences and it outperformed two state-of-the-art descriptors [dense LSS (DLSS) and histogram of orientated phase congruency (HOPC)].
AbstractList Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor called rank-based local self-similarity (RLSS) for optical-to-SAR image template matching. The RLSS descriptor is an improved version of the local self-similarity (LSS) descriptor, inspired by Spearman's rank correlation coefficient in statistics. It can describe the local shape properties of an image in a discriminable manner. To further improve the discriminability, a dense RLSS (DRLSS) descriptor is formed with a dense scheme by integrating the RLSS descriptors for multiple local regions into a dense sampling grid. Experimental results conducted based on the optical and SAR image pairs demonstrated that the proposed descriptor was robust to nonlinear radiometric differences and it outperformed two state-of-the-art descriptors [dense LSS (DLSS) and histogram of orientated phase congruency (HOPC)].
Author Gao, Xin
Jin, Guowang
Zhang, Hongmin
Xiong, Xin
Xu, Qing
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0003-4511-4207
  surname: Xiong
  fullname: Xiong, Xin
  email: xiongxinhbhh@163.com
  organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China
– sequence: 2
  givenname: Qing
  orcidid: 000-0003-2505-7188
  surname: Xu
  fullname: Xu, Qing
  email: xq@szdcec.com
  organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China
– sequence: 3
  givenname: Guowang
  orcidid: 0000-0002-6626-8101
  surname: Jin
  fullname: Jin, Guowang
  email: guowang_jin@163.com
  organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China
– sequence: 4
  givenname: Hongmin
  surname: Zhang
  fullname: Zhang, Hongmin
  email: zhmin1206@163.com
  organization: Institute of Navigation and Aerospace Target Engineering, Information Engineering University, Zhengzhou, China
– sequence: 5
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
  email: glonor@163.com
  organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China
BookMark eNp9kE1LAzEQhoNUsK3-APGy4Dk1n83mWKvWwpZCV8FbSLPZmrrdrUl66L93lxYPHjwMMwzvMwPPAPTqprYA3GI0whjJh2y2ykcEYTkiknPM6QXoY85TiLjAvW5mHHKZflyBQQhbhAhLU9EHi5Wuv-CjDrZIssboKsltVcLc7VylvYvH5MkG490-Nj4p21ruo2tjMDYwn6yS-U5vbLLQ0Xy6enMNLktdBXtz7kPw_vL8Nn2F2XI2n04yaCiXEUqGRaFZgTDhhDOEinEh6JoXRgtDsZWCjNl4bbDgjBSMaJwyktJu20Lrkg7B_enu3jffBxui2jYHX7cvFWFMUCo4RW1KnFLGNyF4Wyrjoo6uqaPXrlIYqc6d6typzp06u2tJ_Ifce7fT_vgvc3dinLX2N59KwgQi9AemR3nK
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_electronics12071635
crossref_primary_10_3390_electronics11182866
crossref_primary_10_3390_rs13245128
crossref_primary_10_1109_JSTARS_2021_3131489
crossref_primary_10_1109_LGRS_2023_3309404
crossref_primary_10_1049_sil2_12176
crossref_primary_10_1109_ACCESS_2024_3520169
crossref_primary_10_1080_01431161_2024_2334806
crossref_primary_10_1109_TGRS_2022_3206804
crossref_primary_10_1109_ACCESS_2022_3217235
crossref_primary_10_1109_JSTARS_2023_3324768
crossref_primary_10_1109_LGRS_2021_3105567
crossref_primary_10_1038_s41598_025_90955_8
crossref_primary_10_1007_s10489_023_04659_5
crossref_primary_10_1080_17538947_2023_2270463
crossref_primary_10_1109_JSTARS_2020_3026162
crossref_primary_10_1109_LGRS_2023_3239191
crossref_primary_10_1117_1_JRS_16_024515
crossref_primary_10_3390_rs13173535
crossref_primary_10_1109_LGRS_2024_3398725
crossref_primary_10_1109_JSTARS_2023_3321387
crossref_primary_10_3390_s20154338
crossref_primary_10_3390_rs15184510
crossref_primary_10_3390_app12094159
crossref_primary_10_1109_TGRS_2023_3288531
crossref_primary_10_1109_LGRS_2022_3156622
crossref_primary_10_3390_rs14030630
crossref_primary_10_1007_s11263_024_02023_9
crossref_primary_10_1109_TGRS_2023_3309855
crossref_primary_10_3390_rs15010163
crossref_primary_10_11834_jig_230737
crossref_primary_10_1109_TGRS_2022_3197357
crossref_primary_10_3390_rs14061442
crossref_primary_10_1016_j_infrared_2022_104454
crossref_primary_10_3390_rs13173443
crossref_primary_10_3390_rs15030572
crossref_primary_10_1109_JSTARS_2021_3055023
crossref_primary_10_1109_JSTARS_2021_3134676
crossref_primary_10_3150_21_BEJ1449
crossref_primary_10_1007_s12518_024_00553_y
crossref_primary_10_1007_s11554_020_01043_1
crossref_primary_10_1080_2150704X_2024_2433749
Cites_doi 10.1117/1.JRS.12.016002
10.1109/TGRS.2018.2790483
10.1109/TGRS.2018.2815523
10.1109/TGRS.2015.2431498
10.1023/B:VISI.0000029664.99615.94
10.1109/TGRS.2012.2236560
10.1016/j.isprsjprs.2015.06.003
10.1109/LGRS.2017.2660067
10.3390/ijgi7100401
10.1109/ACCESS.2018.2883410
10.1109/LGRS.2012.2216500
10.1109/TGRS.2009.2034842
10.1109/TGRS.2017.2656380
10.1109/TGRS.2007.892601
10.1007/s00034-009-9130-7
10.1007/978-1-4471-2458-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2019.2955153
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1746
ExternalDocumentID 10_1109_LGRS_2019_2955153
8924702
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41071296; 41474010; 61401509
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-9417da4d012525400d6d73b5dca7c31e972646bc17542d42a18428372644d0bf3
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:33:42 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 03:45:41 EDT 2025
Wed Aug 27 02:31:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-9417da4d012525400d6d73b5dca7c31e972646bc17542d42a18428372644d0bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4511-4207
000-0003-2505-7188
0000-0002-6626-8101
PQID 2447337530
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2447337530
ieee_primary_8924702
crossref_citationtrail_10_1109_LGRS_2019_2955153
crossref_primary_10_1109_LGRS_2019_2955153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
goshtasby (ref5) 2012
ref12
ref15
xiang (ref9) 2018; 56
ref11
ref2
ref1
ref19
ref18
ref8
kovesi (ref16) 1999; 1
ref4
shechtman (ref17) 2007; 2
ref3
ref6
wu (ref7) 2018; 12
yoo (ref14) 2009; 28
li (ref10) 2018
References_xml – volume: 12
  year: 2018
  ident: ref7
  article-title: Point-matching algorithm based on local neighborhood information for remote sensing image registration
  publication-title: J Appl Remote Sens
  doi: 10.1117/1.JRS.12.016002
– volume: 56
  start-page: 3078
  year: 2018
  ident: ref9
  article-title: OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2018.2790483
– volume: 2
  start-page: 1
  year: 2007
  ident: ref17
  article-title: Matching local self-similarities across images and videos
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref18
  doi: 10.1109/TGRS.2018.2815523
– ident: ref4
  doi: 10.1109/TGRS.2015.2431498
– ident: ref6
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref2
  doi: 10.1109/TGRS.2012.2236560
– year: 2018
  ident: ref10
  article-title: RIFT: Multi-modal image matching based on radiation-invariant feature transform
  publication-title: arXiv 1804 09493
– ident: ref19
  doi: 10.1016/j.isprsjprs.2015.06.003
– ident: ref12
  doi: 10.1109/LGRS.2017.2660067
– ident: ref3
  doi: 10.3390/ijgi7100401
– ident: ref8
  doi: 10.1109/ACCESS.2018.2883410
– ident: ref11
  doi: 10.1109/LGRS.2012.2216500
– ident: ref15
  doi: 10.1109/TGRS.2009.2034842
– ident: ref13
  doi: 10.1109/TGRS.2017.2656380
– volume: 1
  start-page: 1
  year: 1999
  ident: ref16
  article-title: Image features from phase congruency
  publication-title: J Comput Vis Res
– ident: ref1
  doi: 10.1109/TGRS.2007.892601
– volume: 28
  start-page: 144
  year: 2009
  ident: ref14
  article-title: Fast normalized cross-correlation
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-009-9130-7
– year: 2012
  ident: ref5
  publication-title: Image Registration Principles Tools and Methods
  doi: 10.1007/978-1-4471-2458-0
SSID ssj0024887
Score 2.4797542
Snippet Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1742
SubjectTerms Adaptive optics
Correlation
Correlation coefficient
Correlation coefficients
Histograms
Image matching
local self-similarity (LSS)
Nonlinear optics
Optical imaging
Optical sensors
optical-to-synthetic aperture radar (SAR)
Radar imaging
Radiometry
rank
SAR (radar)
Self-similarity
Statistical methods
Synthetic aperture radar
Template matching
Title Rank-Based Local Self-Similarity Descriptor for Optical-to-SAR Image Matching
URI https://ieeexplore.ieee.org/document/8924702
https://www.proquest.com/docview/2447337530
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1BpKpc-sGHGkorHzhVdfDG66x9pFWBVoRKSZFyW609jkBAgmBzCL-eGWcTRFtVve3BXlkee-Y9ezwPYN9aY1HnRipPKzgPBUpC-YV0lVcGvUUbmSj2z3on5_mPkRmtwefVW5gYY0o-ix3-THf5OA0zPio7sPwbrhy5TsRt8Vbrqa6eTWJ4jAikcXbU3GBmyh2cHg-GnMTlOl1HAMHoZzEoiar84YlTeDl6Df3lwBZZJVedWe074eG3mo3_O_I38KrBmeJwsTDewlqcbMLLRvL8Yr4JL46Tpu98C_qDanIlv1A4Q3HKoU0M4_VYDi9vLon2EkoXRE6Tc5neCcK44udtOgCX9VQODwfi-w35JNEnn86nWdtwfvTt19cT2agsyKCNq6XLswKrHClSGWKLSmEPC-0NhqoIOouuIMzU8yFjrVzMuxVxQi6Zw0gKlR_rHWhNppP4DkTsZR7RejKwzr3KqzjGiiCKcmMMVus2qOW8l6EpQc5KGNdloiLKlWyqkk1VNqZqw6dVl9tF_Y1_Nd7iqV81bGa9DXtL45bNDr0vCdYUWhNZU7t_7_UeNrrMrVPi3h606rtZ_EAApPYf08p7BC9h1DA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1VRahcKLQgQgv4wAnh1Buvs_axINoUskVKWim31drjqFXbpCqbQ_n1zDibID6EuO3BXlkee-Y9ezwP4K21xqLOjVSeVnAeCpSE8gvpaq8Meos2MlEsT_uD8_zzxEw24P36LUyMMSWfxS5_prt8nIcFH5UdWP4NV458QHHf9JavtX5W1rNJDo8xgTTOTto7zEy5g-HxaMxpXK7bcwQRjP4lCiVZlT98cQowR9tQroa2zCu56i4a3w3ff6va-L9jfwKPW6QpDpdL4ylsxNkObLWi5xf3O_DwOKn63u9COapnV_IDBTQUQw5uYhyvp3J8eXNJxJdwuiB6mtzL_E4QyhVfb9MRuGzmcnw4Eic35JVESV6dz7OewfnRp7OPA9nqLMigjWuky7MC6xwpVhnii0phHwvtDYa6CDqLriDU1PchY7VczHs1sUIumsNYCpWf6uewOZvP4gsQsZ95ROvJxDr3Kq_jFGsCKcpNMVitO6BW816Ftgg5a2FcV4mMKFexqSo2VdWaqgPv1l1ulxU4_tV4l6d-3bCd9Q7sr4xbtXv0W0XAptCa6Jp6-fdeb2BrcFYOq-HJ6Zc9eNRjpp3S-PZhs7lbxFcERxr_Oq3CH3E_13o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-Based+Local+Self-Similarity+Descriptor+for+Optical-to-SAR+Image+Matching&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Xiong%2C+Xin&rft.au=Xu%2C+Qing&rft.au=Jin%2C+Guowang&rft.au=Zhang%2C+Hongmin&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=17&rft.issue=10&rft.spage=1742&rft.epage=1746&rft_id=info:doi/10.1109%2FLGRS.2019.2955153&rft.externalDocID=8924702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon