Rank-Based Local Self-Similarity Descriptor for Optical-to-SAR Image Matching
Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor cal...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 17; no. 10; pp. 1742 - 1746 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor called rank-based local self-similarity (RLSS) for optical-to-SAR image template matching. The RLSS descriptor is an improved version of the local self-similarity (LSS) descriptor, inspired by Spearman's rank correlation coefficient in statistics. It can describe the local shape properties of an image in a discriminable manner. To further improve the discriminability, a dense RLSS (DRLSS) descriptor is formed with a dense scheme by integrating the RLSS descriptors for multiple local regions into a dense sampling grid. Experimental results conducted based on the optical and SAR image pairs demonstrated that the proposed descriptor was robust to nonlinear radiometric differences and it outperformed two state-of-the-art descriptors [dense LSS (DLSS) and histogram of orientated phase congruency (HOPC)]. |
---|---|
AbstractList | Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor called rank-based local self-similarity (RLSS) for optical-to-SAR image template matching. The RLSS descriptor is an improved version of the local self-similarity (LSS) descriptor, inspired by Spearman's rank correlation coefficient in statistics. It can describe the local shape properties of an image in a discriminable manner. To further improve the discriminability, a dense RLSS (DRLSS) descriptor is formed with a dense scheme by integrating the RLSS descriptors for multiple local regions into a dense sampling grid. Experimental results conducted based on the optical and SAR image pairs demonstrated that the proposed descriptor was robust to nonlinear radiometric differences and it outperformed two state-of-the-art descriptors [dense LSS (DLSS) and histogram of orientated phase congruency (HOPC)]. |
Author | Gao, Xin Jin, Guowang Zhang, Hongmin Xiong, Xin Xu, Qing |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0003-4511-4207 surname: Xiong fullname: Xiong, Xin email: xiongxinhbhh@163.com organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China – sequence: 2 givenname: Qing orcidid: 000-0003-2505-7188 surname: Xu fullname: Xu, Qing email: xq@szdcec.com organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China – sequence: 3 givenname: Guowang orcidid: 0000-0002-6626-8101 surname: Jin fullname: Jin, Guowang email: guowang_jin@163.com organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China – sequence: 4 givenname: Hongmin surname: Zhang fullname: Zhang, Hongmin email: zhmin1206@163.com organization: Institute of Navigation and Aerospace Target Engineering, Information Engineering University, Zhengzhou, China – sequence: 5 givenname: Xin surname: Gao fullname: Gao, Xin email: glonor@163.com organization: Institute of Geospatial Information, Information Engineering University, Zhengzhou, China |
BookMark | eNp9kE1LAzEQhoNUsK3-APGy4Dk1n83mWKvWwpZCV8FbSLPZmrrdrUl66L93lxYPHjwMMwzvMwPPAPTqprYA3GI0whjJh2y2ykcEYTkiknPM6QXoY85TiLjAvW5mHHKZflyBQQhbhAhLU9EHi5Wuv-CjDrZIssboKsltVcLc7VylvYvH5MkG490-Nj4p21ruo2tjMDYwn6yS-U5vbLLQ0Xy6enMNLktdBXtz7kPw_vL8Nn2F2XI2n04yaCiXEUqGRaFZgTDhhDOEinEh6JoXRgtDsZWCjNl4bbDgjBSMaJwyktJu20Lrkg7B_enu3jffBxui2jYHX7cvFWFMUCo4RW1KnFLGNyF4Wyrjoo6uqaPXrlIYqc6d6typzp06u2tJ_Ifce7fT_vgvc3dinLX2N59KwgQi9AemR3nK |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_3390_electronics12071635 crossref_primary_10_3390_electronics11182866 crossref_primary_10_3390_rs13245128 crossref_primary_10_1109_JSTARS_2021_3131489 crossref_primary_10_1109_LGRS_2023_3309404 crossref_primary_10_1049_sil2_12176 crossref_primary_10_1109_ACCESS_2024_3520169 crossref_primary_10_1080_01431161_2024_2334806 crossref_primary_10_1109_TGRS_2022_3206804 crossref_primary_10_1109_ACCESS_2022_3217235 crossref_primary_10_1109_JSTARS_2023_3324768 crossref_primary_10_1109_LGRS_2021_3105567 crossref_primary_10_1038_s41598_025_90955_8 crossref_primary_10_1007_s10489_023_04659_5 crossref_primary_10_1080_17538947_2023_2270463 crossref_primary_10_1109_JSTARS_2020_3026162 crossref_primary_10_1109_LGRS_2023_3239191 crossref_primary_10_1117_1_JRS_16_024515 crossref_primary_10_3390_rs13173535 crossref_primary_10_1109_LGRS_2024_3398725 crossref_primary_10_1109_JSTARS_2023_3321387 crossref_primary_10_3390_s20154338 crossref_primary_10_3390_rs15184510 crossref_primary_10_3390_app12094159 crossref_primary_10_1109_TGRS_2023_3288531 crossref_primary_10_1109_LGRS_2022_3156622 crossref_primary_10_3390_rs14030630 crossref_primary_10_1007_s11263_024_02023_9 crossref_primary_10_1109_TGRS_2023_3309855 crossref_primary_10_3390_rs15010163 crossref_primary_10_11834_jig_230737 crossref_primary_10_1109_TGRS_2022_3197357 crossref_primary_10_3390_rs14061442 crossref_primary_10_1016_j_infrared_2022_104454 crossref_primary_10_3390_rs13173443 crossref_primary_10_3390_rs15030572 crossref_primary_10_1109_JSTARS_2021_3055023 crossref_primary_10_1109_JSTARS_2021_3134676 crossref_primary_10_3150_21_BEJ1449 crossref_primary_10_1007_s12518_024_00553_y crossref_primary_10_1007_s11554_020_01043_1 crossref_primary_10_1080_2150704X_2024_2433749 |
Cites_doi | 10.1117/1.JRS.12.016002 10.1109/TGRS.2018.2790483 10.1109/TGRS.2018.2815523 10.1109/TGRS.2015.2431498 10.1023/B:VISI.0000029664.99615.94 10.1109/TGRS.2012.2236560 10.1016/j.isprsjprs.2015.06.003 10.1109/LGRS.2017.2660067 10.3390/ijgi7100401 10.1109/ACCESS.2018.2883410 10.1109/LGRS.2012.2216500 10.1109/TGRS.2009.2034842 10.1109/TGRS.2017.2656380 10.1109/TGRS.2007.892601 10.1007/s00034-009-9130-7 10.1007/978-1-4471-2458-0 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2019.2955153 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 1746 |
ExternalDocumentID | 10_1109_LGRS_2019_2955153 8924702 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41071296; 41474010; 61401509 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-9417da4d012525400d6d73b5dca7c31e972646bc17542d42a18428372644d0bf3 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:33:42 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Tue Jul 01 03:45:41 EDT 2025 Wed Aug 27 02:31:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-9417da4d012525400d6d73b5dca7c31e972646bc17542d42a18428372644d0bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4511-4207 000-0003-2505-7188 0000-0002-6626-8101 |
PQID | 2447337530 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2447337530 ieee_primary_8924702 crossref_citationtrail_10_1109_LGRS_2019_2955153 crossref_primary_10_1109_LGRS_2019_2955153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 goshtasby (ref5) 2012 ref12 ref15 xiang (ref9) 2018; 56 ref11 ref2 ref1 ref19 ref18 ref8 kovesi (ref16) 1999; 1 ref4 shechtman (ref17) 2007; 2 ref3 ref6 wu (ref7) 2018; 12 yoo (ref14) 2009; 28 li (ref10) 2018 |
References_xml | – volume: 12 year: 2018 ident: ref7 article-title: Point-matching algorithm based on local neighborhood information for remote sensing image registration publication-title: J Appl Remote Sens doi: 10.1117/1.JRS.12.016002 – volume: 56 start-page: 3078 year: 2018 ident: ref9 article-title: OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2018.2790483 – volume: 2 start-page: 1 year: 2007 ident: ref17 article-title: Matching local self-similarities across images and videos publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref18 doi: 10.1109/TGRS.2018.2815523 – ident: ref4 doi: 10.1109/TGRS.2015.2431498 – ident: ref6 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref2 doi: 10.1109/TGRS.2012.2236560 – year: 2018 ident: ref10 article-title: RIFT: Multi-modal image matching based on radiation-invariant feature transform publication-title: arXiv 1804 09493 – ident: ref19 doi: 10.1016/j.isprsjprs.2015.06.003 – ident: ref12 doi: 10.1109/LGRS.2017.2660067 – ident: ref3 doi: 10.3390/ijgi7100401 – ident: ref8 doi: 10.1109/ACCESS.2018.2883410 – ident: ref11 doi: 10.1109/LGRS.2012.2216500 – ident: ref15 doi: 10.1109/TGRS.2009.2034842 – ident: ref13 doi: 10.1109/TGRS.2017.2656380 – volume: 1 start-page: 1 year: 1999 ident: ref16 article-title: Image features from phase congruency publication-title: J Comput Vis Res – ident: ref1 doi: 10.1109/TGRS.2007.892601 – volume: 28 start-page: 144 year: 2009 ident: ref14 article-title: Fast normalized cross-correlation publication-title: Circuits Syst Signal Process doi: 10.1007/s00034-009-9130-7 – year: 2012 ident: ref5 publication-title: Image Registration Principles Tools and Methods doi: 10.1007/978-1-4471-2458-0 |
SSID | ssj0024887 |
Score | 2.4797542 |
Snippet | Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1742 |
SubjectTerms | Adaptive optics Correlation Correlation coefficient Correlation coefficients Histograms Image matching local self-similarity (LSS) Nonlinear optics Optical imaging Optical sensors optical-to-synthetic aperture radar (SAR) Radar imaging Radiometry rank SAR (radar) Self-similarity Statistical methods Synthetic aperture radar Template matching |
Title | Rank-Based Local Self-Similarity Descriptor for Optical-to-SAR Image Matching |
URI | https://ieeexplore.ieee.org/document/8924702 https://www.proquest.com/docview/2447337530 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1BpKpc-sGHGkorHzhVdfDG66x9pFWBVoRKSZFyW609jkBAgmBzCL-eGWcTRFtVve3BXlkee-Y9ezwPYN9aY1HnRipPKzgPBUpC-YV0lVcGvUUbmSj2z3on5_mPkRmtwefVW5gYY0o-ix3-THf5OA0zPio7sPwbrhy5TsRt8Vbrqa6eTWJ4jAikcXbU3GBmyh2cHg-GnMTlOl1HAMHoZzEoiar84YlTeDl6Df3lwBZZJVedWe074eG3mo3_O_I38KrBmeJwsTDewlqcbMLLRvL8Yr4JL46Tpu98C_qDanIlv1A4Q3HKoU0M4_VYDi9vLon2EkoXRE6Tc5neCcK44udtOgCX9VQODwfi-w35JNEnn86nWdtwfvTt19cT2agsyKCNq6XLswKrHClSGWKLSmEPC-0NhqoIOouuIMzU8yFjrVzMuxVxQi6Zw0gKlR_rHWhNppP4DkTsZR7RejKwzr3KqzjGiiCKcmMMVus2qOW8l6EpQc5KGNdloiLKlWyqkk1VNqZqw6dVl9tF_Y1_Nd7iqV81bGa9DXtL45bNDr0vCdYUWhNZU7t_7_UeNrrMrVPi3h606rtZ_EAApPYf08p7BC9h1DA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1VRahcKLQgQgv4wAnh1Buvs_axINoUskVKWim31drjqFXbpCqbQ_n1zDibID6EuO3BXlkee-Y9ezwP4K21xqLOjVSeVnAeCpSE8gvpaq8Meos2MlEsT_uD8_zzxEw24P36LUyMMSWfxS5_prt8nIcFH5UdWP4NV458QHHf9JavtX5W1rNJDo8xgTTOTto7zEy5g-HxaMxpXK7bcwQRjP4lCiVZlT98cQowR9tQroa2zCu56i4a3w3ff6va-L9jfwKPW6QpDpdL4ylsxNkObLWi5xf3O_DwOKn63u9COapnV_IDBTQUQw5uYhyvp3J8eXNJxJdwuiB6mtzL_E4QyhVfb9MRuGzmcnw4Eic35JVESV6dz7OewfnRp7OPA9nqLMigjWuky7MC6xwpVhnii0phHwvtDYa6CDqLriDU1PchY7VczHs1sUIumsNYCpWf6uewOZvP4gsQsZ95ROvJxDr3Kq_jFGsCKcpNMVitO6BW816Ftgg5a2FcV4mMKFexqSo2VdWaqgPv1l1ulxU4_tV4l6d-3bCd9Q7sr4xbtXv0W0XAptCa6Jp6-fdeb2BrcFYOq-HJ6Zc9eNRjpp3S-PZhs7lbxFcERxr_Oq3CH3E_13o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-Based+Local+Self-Similarity+Descriptor+for+Optical-to-SAR+Image+Matching&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Xiong%2C+Xin&rft.au=Xu%2C+Qing&rft.au=Jin%2C+Guowang&rft.au=Zhang%2C+Hongmin&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=17&rft.issue=10&rft.spage=1742&rft.epage=1746&rft_id=info:doi/10.1109%2FLGRS.2019.2955153&rft.externalDocID=8924702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |