Rank-Based Local Self-Similarity Descriptor for Optical-to-SAR Image Matching
Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor cal...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 17; no. 10; pp. 1742 - 1746 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor called rank-based local self-similarity (RLSS) for optical-to-SAR image template matching. The RLSS descriptor is an improved version of the local self-similarity (LSS) descriptor, inspired by Spearman's rank correlation coefficient in statistics. It can describe the local shape properties of an image in a discriminable manner. To further improve the discriminability, a dense RLSS (DRLSS) descriptor is formed with a dense scheme by integrating the RLSS descriptors for multiple local regions into a dense sampling grid. Experimental results conducted based on the optical and SAR image pairs demonstrated that the proposed descriptor was robust to nonlinear radiometric differences and it outperformed two state-of-the-art descriptors [dense LSS (DLSS) and histogram of orientated phase congruency (HOPC)]. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2019.2955153 |