Multi-Scale Acoustic Velocity Inversion Based on a Convolutional Neural Network
The full waveform inversion at this stage still has many problems in the recovery of deep background velocities. Velocity modeling based on end-to-end deep learning usually lacks a generalization capability. The proposed method is a multi-scale convolutional neural network velocity inversion (Ms-CNN...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 5; p. 772 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The full waveform inversion at this stage still has many problems in the recovery of deep background velocities. Velocity modeling based on end-to-end deep learning usually lacks a generalization capability. The proposed method is a multi-scale convolutional neural network velocity inversion (Ms-CNNVI) that incorporates a multi-scale strategy into the CNN-based velocity inversion algorithm for the first time. This approach improves the accuracy of the inversion by integrating a multi-scale strategy from low-frequency to high-frequency inversion and by incorporating a smoothing strategy in the multi-scale (MS) convolutional neural network (CNN) inversion process. Furthermore, using angle-domain reverse time migration (RTM) for dataset construction in Ms-CNNVI significantly improves the inversion efficiency. Numerical tests showcase the efficacy of the suggested approach. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16050772 |