Jointly Optimal Routing and Caching for Arbitrary Network Topologies

We study a problem of minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We cast this as an equivalent caching gain maximization problem, and consider both source routing and hop-by-hop routing settings. The respective offline problems ar...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 36; no. 6; pp. 1258 - 1275
Main Authors Ioannidis, Stratis, Yeh, Edmund
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study a problem of minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We cast this as an equivalent caching gain maximization problem, and consider both source routing and hop-by-hop routing settings. The respective offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared with prior art, including algorithms optimizing caching under fixed routing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2018.2844981