Proof of Federated Learning: A Novel Energy-Recycling Consensus Algorithm
Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely pro...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 32; no. 8; pp. 2074 - 2085 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1045-9219 1558-2183 |
DOI | 10.1109/TPDS.2021.3056773 |
Cover
Loading…
Abstract | Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely proof of federated learning (PoFL), where the energy originally wasted to solve difficult but meaningless puzzles in PoW is reinvested to federated learning. Federated learning and pooled-mining, a trend of PoW, have a natural fit in terms of organization structure. However, the separation between the data usufruct and ownership in blockchain lead to data privacy leakage in model training and verification, deviating from the original intention of federal learning. To address the challenge, a reverse game-based data trading mechanism and a privacy-preserving model verification mechanism are proposed. The former can guard against training data leakage while the latter verifies the accuracy of a trained model with privacy preservation of the task requester's test data as well as the pool's submitted model. To the best of our knowledge, our article is the first work to employ federal learning as the proof of work for blockchain. Extensive simulations based on synthetic and real-world data demonstrate the effectiveness and efficiency of our proposed mechanisms. |
---|---|
AbstractList | Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely proof of federated learning (PoFL), where the energy originally wasted to solve difficult but meaningless puzzles in PoW is reinvested to federated learning. Federated learning and pooled-mining, a trend of PoW, have a natural fit in terms of organization structure. However, the separation between the data usufruct and ownership in blockchain lead to data privacy leakage in model training and verification, deviating from the original intention of federal learning. To address the challenge, a reverse game-based data trading mechanism and a privacy-preserving model verification mechanism are proposed. The former can guard against training data leakage while the latter verifies the accuracy of a trained model with privacy preservation of the task requester's test data as well as the pool's submitted model. To the best of our knowledge, our article is the first work to employ federal learning as the proof of work for blockchain. Extensive simulations based on synthetic and real-world data demonstrate the effectiveness and efficiency of our proposed mechanisms. |
Author | Wang, Shengling Qu, Xidi Hu, Qin Cheng, Xiuzhen |
Author_xml | – sequence: 1 givenname: Xidi orcidid: 0000-0001-6007-5643 surname: Qu fullname: Qu, Xidi email: sindychanson@mail.bnu.edu.cn organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 2 givenname: Shengling orcidid: 0000-0002-6698-3623 surname: Wang fullname: Wang, Shengling email: wangshengling@bnu.edu.cn organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 3 givenname: Qin orcidid: 0000-0002-8847-8345 surname: Hu fullname: Hu, Qin email: qinhu@iu.edu organization: Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA – sequence: 4 givenname: Xiuzhen orcidid: 0000-0001-5912-4647 surname: Cheng fullname: Cheng, Xiuzhen email: xzcheng@sdu.edu.cn organization: School of Computer Science and Technology, Shandong University, Jinan, China |
BookMark | eNp9kE9LAzEQxYNUsK1-APGy4Hlr_nYTb6W2KhQtWs8hm52tW7ZJTbZCv727tHjwIAzMwLw3j_kNUM95BwhdEzwiBKu71fLhfUQxJSOGxTjL2BnqEyFkSolkvXbGXKSKEnWBBjFuMCZcYN5Hz8vgfZm0NYcCgmmgSBZggqvc-j6ZJC_-G-pk5iCsD-kb2IOt200y9S6Ci_uYTOq1D1Xzub1E56WpI1yd-hB9zGer6VO6eH18nk4WqWVCNakUEkug45zxDGxBC0uUUoVhrGSMF6UhWFICFmdWUWkyBeMc8gKLnHObSc6G6PZ4dxf81x5iozd-H1wbqSlXcpxRJToVOaps8DEGKPUuVFsTDppg3RHTHTHdEdMnYq0n--OxVWOayrsmmKr-13lzdFYA8Juk2hcloewHcU953Q |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102792 crossref_primary_10_1109_JIOT_2022_3165973 crossref_primary_10_1049_sfw2_3378383 crossref_primary_10_1109_TCC_2024_3372814 crossref_primary_10_1007_s10115_024_02117_3 crossref_primary_10_23919_JSC_2022_0016 crossref_primary_10_1371_journal_pone_0308991 crossref_primary_10_1016_j_sysarc_2022_102503 crossref_primary_10_1109_TC_2024_3353455 crossref_primary_10_1016_j_iot_2024_101143 crossref_primary_10_1109_JIOT_2022_3231363 crossref_primary_10_1145_3680544 crossref_primary_10_1109_JIOT_2022_3171926 crossref_primary_10_1109_TNSE_2024_3361458 crossref_primary_10_1109_TSC_2023_3336980 crossref_primary_10_1145_3614424 crossref_primary_10_1109_TSC_2023_3347716 crossref_primary_10_1145_3700641 crossref_primary_10_1109_TCCN_2022_3177522 crossref_primary_10_1109_TPDS_2023_3277367 crossref_primary_10_1109_TNSM_2024_3379475 crossref_primary_10_1109_ACCESS_2023_3257029 crossref_primary_10_1016_j_asoc_2024_112405 crossref_primary_10_1002_ett_4824 crossref_primary_10_1007_s10586_022_03696_y crossref_primary_10_1109_JIOT_2022_3164147 crossref_primary_10_1016_j_dcan_2022_05_006 crossref_primary_10_1145_3679013 crossref_primary_10_1016_j_aej_2024_06_071 crossref_primary_10_1007_s11042_022_14161_8 crossref_primary_10_1109_TSC_2024_3399653 crossref_primary_10_1016_j_neucom_2023_126739 crossref_primary_10_1109_TPDS_2022_3157258 crossref_primary_10_1109_TIFS_2025_3546841 crossref_primary_10_1145_3570953 crossref_primary_10_1016_j_jnca_2023_103795 crossref_primary_10_3390_a16010034 crossref_primary_10_1109_OJCOMS_2024_3506214 crossref_primary_10_1109_TMC_2024_3477616 crossref_primary_10_1109_JIOT_2023_3280069 crossref_primary_10_1109_JSAC_2022_3213347 crossref_primary_10_3390_electronics12112500 crossref_primary_10_3390_sym15040924 crossref_primary_10_1109_TDSC_2024_3417531 crossref_primary_10_1016_j_bcra_2022_100089 crossref_primary_10_1016_j_comcom_2024_04_024 crossref_primary_10_1007_s00521_024_09715_w crossref_primary_10_1109_TBDATA_2024_3362191 crossref_primary_10_3390_s22031094 crossref_primary_10_3390_electronics13111999 crossref_primary_10_32604_cmes_2024_030084 crossref_primary_10_1016_j_autcon_2022_104638 crossref_primary_10_1109_COMST_2023_3305312 crossref_primary_10_1109_TMC_2023_3325334 crossref_primary_10_1155_2021_9322368 crossref_primary_10_1109_TSUSC_2023_3341440 crossref_primary_10_1108_IJICC_05_2022_0126 crossref_primary_10_1109_TSC_2023_3238690 crossref_primary_10_1145_3676164 crossref_primary_10_1109_TPDS_2021_3138848 crossref_primary_10_3390_electronics12204214 crossref_primary_10_3390_su162310552 crossref_primary_10_3390_electronics13224395 crossref_primary_10_1109_JIOT_2023_3282732 |
Cites_doi | 10.1007/978-3-319-70278-0_11 10.1145/3298981 10.1109/BigData47090.2019.9005992 10.1007/978-3-319-78597-4 10.1007/978-3-540-70583-3_40 10.1109/TVLSI.2017.2661746 10.1109/CVPRW.2019.00339 10.1109/SP.2014.37 10.1007/978-3-540-78524-8_22 10.1007/978-3-642-00457-5_34 10.1109/BLOC.2019.8751419 10.1145/3195970.3196023 10.3390/e21080723 10.1109/NCA.2017.8171383 10.1007/978-3-642-25560-1_2 10.1109/MIS.2020.2988525 10.1109/SP.2013.39 10.1016/j.comcom.2020.07.045 10.1109/ICDCS.2019.00121 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2021.3056773 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 2085 |
ExternalDocumentID | 10_1109_TPDS_2021_3056773 9347812 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education of the People's Republic of China; Ministry of Education of China grantid: 2020KJ010301 funderid: 10.13039/501100002338 – fundername: National Natural Science Foundation of China grantid: 61772080; 62072044 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2019YFB2102600 funderid: 10.13039/501100012166 – fundername: Engineering Research Center of Intelligent Technology and Educational Application |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-85808e26b347ecd2dc1999da33f334dfa10821ec07c928a79e6bebd05b44c7843 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Sun Jun 29 14:13:46 EDT 2025 Tue Jul 01 03:58:39 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Wed Aug 27 02:33:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-85808e26b347ecd2dc1999da33f334dfa10821ec07c928a79e6bebd05b44c7843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8847-8345 0000-0002-6698-3623 0000-0001-6007-5643 0000-0001-5912-4647 |
PQID | 2498672954 |
PQPubID | 85437 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TPDS_2021_3056773 crossref_citationtrail_10_1109_TPDS_2021_3056773 ieee_primary_9347812 proquest_journals_2498672954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref15 ref36 ref14 ref31 ref30 gilad-bachrach (ref17) 2016 bonawitz (ref8) 2019 ref19 lecun and (ref16) 2010 ref18 nguyen (ref3) 2018; 14 king (ref4) 2013; 1 cheng (ref11) 2019 ref24 ref26 ref25 mcmahan (ref13) 2017 ref20 ref22 kone?n? (ref10) 2016 ref21 (ref1) 2019 king (ref2) 2012; 19 krizhevsky (ref27) 2009 liu (ref12) 2018 krizhevsky (ref28) 2012 graham (ref29) 2014 ref7 ref9 ball (ref33) 2017; 2017 ref6 ref5 (ref32) 2019 pinkas (ref23) 2009 |
References_xml | – ident: ref35 doi: 10.1007/978-3-319-70278-0_11 – ident: ref9 doi: 10.1145/3298981 – ident: ref14 doi: 10.1109/BigData47090.2019.9005992 – start-page: 250 year: 2009 ident: ref23 article-title: Secure two-party computation is practical publication-title: Proc Int Conf Theory Appl Cryptol Inf Secur – year: 2018 ident: ref12 article-title: Secure federated transfer learning – ident: ref19 doi: 10.1007/978-3-319-78597-4 – year: 2019 ident: ref8 article-title: Towards federated learning at scale: System design – ident: ref22 doi: 10.1007/978-3-540-70583-3_40 – ident: ref31 doi: 10.1109/TVLSI.2017.2661746 – ident: ref6 doi: 10.1109/CVPRW.2019.00339 – volume: 2017 year: 2017 ident: ref33 article-title: Proofs of useful work publication-title: IACR Cryptol ePrint Arch – ident: ref34 doi: 10.1109/SP.2014.37 – ident: ref25 doi: 10.1007/978-3-540-78524-8_22 – ident: ref26 doi: 10.1007/978-3-642-00457-5_34 – year: 2010 ident: ref16 article-title: MNIST handwritten digit database – start-page: 1273 year: 2017 ident: ref13 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – ident: ref7 doi: 10.1109/BLOC.2019.8751419 – ident: ref20 doi: 10.1145/3195970.3196023 – year: 2014 ident: ref29 article-title: Fractional max-pooling publication-title: CoRR – year: 2019 ident: ref1 article-title: Bitcoin energy consumption index – ident: ref36 doi: 10.3390/e21080723 – ident: ref5 doi: 10.1109/NCA.2017.8171383 – volume: 1 year: 2013 ident: ref4 article-title: Primecoin: Cryptocurrency with prime number proof-of-work – ident: ref24 doi: 10.1007/978-3-642-25560-1_2 – start-page: 201 year: 2016 ident: ref17 article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy publication-title: Proc Int Conf Mach Learn – year: 2016 ident: ref10 article-title: Federated learning: Strategies for improving communication efficiency – year: 2019 ident: ref11 article-title: SecureBoost: A lossless federated learning framework – start-page: 1097 year: 2012 ident: ref28 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Int Conf Neural Inf Process – year: 2009 ident: ref27 article-title: Learning multiple layers of features from tiny images publication-title: CiteSeer – ident: ref15 doi: 10.1109/MIS.2020.2988525 – volume: 14 start-page: 101 year: 2018 ident: ref3 article-title: A survey about consensus algorithms used in blockchain publication-title: J Inf Process Syst – ident: ref21 doi: 10.1109/SP.2013.39 – ident: ref30 doi: 10.1016/j.comcom.2020.07.045 – volume: 19 year: 2012 ident: ref2 article-title: PPCoin: Peer-to-peer crypto-currency with proof-of-stake publication-title: self-published paper – year: 2019 ident: ref32 – ident: ref18 doi: 10.1109/ICDCS.2019.00121 |
SSID | ssj0014504 |
Score | 2.6280665 |
Snippet | Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2074 |
SubjectTerms | Algorithms Blockchain Blockchains Collaboration Computational modeling consensus algorithm Cryptography Data models Federated learning Game theory incentive mechanism Leakage Machine learning Miners Model accuracy Privacy Recycling Task analysis Training Training data Verification |
Title | Proof of Federated Learning: A Novel Energy-Recycling Consensus Algorithm |
URI | https://ieeexplore.ieee.org/document/9347812 https://www.proquest.com/docview/2498672954 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BT_AADIbWDSY_8ISWktROYvNWARUggZAAibfIH-cO0bVTSSdtf_3OiVvxpWlSFOXBjiz_7POd7-53APsk81GhcYkwXNNLYiKF94m2XttUojU6XOhfXhVnd-LiPr9fgm-LXBhEbILPsBs-G1--m9hZuCo7VDwkRpLAXSbDrc3VWngMRN6UCiTrIk8UbcPowcxSdXh7fXJDlmAv6wZ9uSz5izOoKaryRhI3x8tgAy7nA2ujSh67s9p07Z9XnI3_O_JNWI96Juu3C-MDLOF4CzbmNRxY3NJbsPaMkHAbzq9JkfaMnkEgmSA91LHIwDo8Yn12NfmFI3ba5AsmpHH-DomVQxaqfoaSGU-sPxpOpg_19x8f4W5went8lsRiC4nluaoTmUuCplcYGila13M2EBQ4zbnnXDivM1IWMrRpaVVP6lJhYQjjNDdC2FIKvgMr48kYPwHjpZLcOWsL5UkOa6Ox8BlHLLkVXuQdSOfTX9nIRB4KYoyqxiJJVRUQqwJiVUSsAweLLj9bGo5_Nd4OCCwaxsnvwO4c4ypu1KeKrE9ZlMHZ-fn9Xl9gNfy7jfnbhZV6OsM90kNq87VZgH8BvkTZvw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-atgNw2MYGorCBD5wQ6ZLaSWxuFazqYK0m0Um7Rf54LtO6Fm0p0vbX7zlxK76EkKIoB1ux_LOf3_P7-AG8JZmPCo1LhOGaXhITKbxPtPXaphKt0eFCfzQuhufi80V-sQHv17kwiNgEn2E3fDa-fLewy3BVdqR4SIwkgbuVh2TcNltr7TMQeUMWSPZFnijaiNGHmaXqaHL26SvZgr2sGzTmsuS_nEINrcofsrg5YAY7MFoNrY0rueoua9O1979Vbfzfse_CdtQ0Wb9dGk9hA-d7sLNicWBxU-_Bk59KEu7DyRmp0p7RMwhlJkgTdSzWYJ1-YH02XvzAGTtuMgYT0jnvQmrllAXez0Caccv6s-ni5rL-dv0MzgfHk4_DJNItJJbnqk5kLgmcXmFopGhdz9lQosBpzj3nwnmdkbqQoU1Lq3pSlwoLQyinuRHCllLw57A5X8zxBTBeKsmds7ZQniSxNhoLn3HEklvhRd6BdDX9lY21yAMlxqxqbJJUVQGxKiBWRcQ68G7d5XtbiONfjfcDAuuGcfI7cLDCuIpb9bYi-1MWZXB3vvx7rzfwaDgZnVanJ-Mvr-Bx-E8bAXgAm_XNEg9JK6nN62YxPgBDMd0H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proof+of+Federated+Learning%3A+A+Novel+Energy-Recycling+Consensus+Algorithm&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Qu%2C+Xidi&rft.au=Wang%2C+Shengling&rft.au=Hu%2C+Qin&rft.au=Cheng%2C+Xiuzhen&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=32&rft.issue=8&rft.spage=2074&rft_id=info:doi/10.1109%2FTPDS.2021.3056773&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |