Proof of Federated Learning: A Novel Energy-Recycling Consensus Algorithm

Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 32; no. 8; pp. 2074 - 2085
Main Authors Qu, Xidi, Wang, Shengling, Hu, Qin, Cheng, Xiuzhen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1045-9219
1558-2183
DOI10.1109/TPDS.2021.3056773

Cover

Loading…
Abstract Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely proof of federated learning (PoFL), where the energy originally wasted to solve difficult but meaningless puzzles in PoW is reinvested to federated learning. Federated learning and pooled-mining, a trend of PoW, have a natural fit in terms of organization structure. However, the separation between the data usufruct and ownership in blockchain lead to data privacy leakage in model training and verification, deviating from the original intention of federal learning. To address the challenge, a reverse game-based data trading mechanism and a privacy-preserving model verification mechanism are proposed. The former can guard against training data leakage while the latter verifies the accuracy of a trained model with privacy preservation of the task requester's test data as well as the pool's submitted model. To the best of our knowledge, our article is the first work to employ federal learning as the proof of work for blockchain. Extensive simulations based on synthetic and real-world data demonstrate the effectiveness and efficiency of our proposed mechanisms.
AbstractList Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely proof of federated learning (PoFL), where the energy originally wasted to solve difficult but meaningless puzzles in PoW is reinvested to federated learning. Federated learning and pooled-mining, a trend of PoW, have a natural fit in terms of organization structure. However, the separation between the data usufruct and ownership in blockchain lead to data privacy leakage in model training and verification, deviating from the original intention of federal learning. To address the challenge, a reverse game-based data trading mechanism and a privacy-preserving model verification mechanism are proposed. The former can guard against training data leakage while the latter verifies the accuracy of a trained model with privacy preservation of the task requester's test data as well as the pool's submitted model. To the best of our knowledge, our article is the first work to employ federal learning as the proof of work for blockchain. Extensive simulations based on synthetic and real-world data demonstrate the effectiveness and efficiency of our proposed mechanisms.
Author Wang, Shengling
Qu, Xidi
Hu, Qin
Cheng, Xiuzhen
Author_xml – sequence: 1
  givenname: Xidi
  orcidid: 0000-0001-6007-5643
  surname: Qu
  fullname: Qu, Xidi
  email: sindychanson@mail.bnu.edu.cn
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Shengling
  orcidid: 0000-0002-6698-3623
  surname: Wang
  fullname: Wang, Shengling
  email: wangshengling@bnu.edu.cn
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 3
  givenname: Qin
  orcidid: 0000-0002-8847-8345
  surname: Hu
  fullname: Hu, Qin
  email: qinhu@iu.edu
  organization: Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
– sequence: 4
  givenname: Xiuzhen
  orcidid: 0000-0001-5912-4647
  surname: Cheng
  fullname: Cheng, Xiuzhen
  email: xzcheng@sdu.edu.cn
  organization: School of Computer Science and Technology, Shandong University, Jinan, China
BookMark eNp9kE9LAzEQxYNUsK1-APGy4Hlr_nYTb6W2KhQtWs8hm52tW7ZJTbZCv727tHjwIAzMwLw3j_kNUM95BwhdEzwiBKu71fLhfUQxJSOGxTjL2BnqEyFkSolkvXbGXKSKEnWBBjFuMCZcYN5Hz8vgfZm0NYcCgmmgSBZggqvc-j6ZJC_-G-pk5iCsD-kb2IOt200y9S6Ci_uYTOq1D1Xzub1E56WpI1yd-hB9zGer6VO6eH18nk4WqWVCNakUEkug45zxDGxBC0uUUoVhrGSMF6UhWFICFmdWUWkyBeMc8gKLnHObSc6G6PZ4dxf81x5iozd-H1wbqSlXcpxRJToVOaps8DEGKPUuVFsTDppg3RHTHTHdEdMnYq0n--OxVWOayrsmmKr-13lzdFYA8Juk2hcloewHcU953Q
CODEN ITDSEO
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102792
crossref_primary_10_1109_JIOT_2022_3165973
crossref_primary_10_1049_sfw2_3378383
crossref_primary_10_1109_TCC_2024_3372814
crossref_primary_10_1007_s10115_024_02117_3
crossref_primary_10_23919_JSC_2022_0016
crossref_primary_10_1371_journal_pone_0308991
crossref_primary_10_1016_j_sysarc_2022_102503
crossref_primary_10_1109_TC_2024_3353455
crossref_primary_10_1016_j_iot_2024_101143
crossref_primary_10_1109_JIOT_2022_3231363
crossref_primary_10_1145_3680544
crossref_primary_10_1109_JIOT_2022_3171926
crossref_primary_10_1109_TNSE_2024_3361458
crossref_primary_10_1109_TSC_2023_3336980
crossref_primary_10_1145_3614424
crossref_primary_10_1109_TSC_2023_3347716
crossref_primary_10_1145_3700641
crossref_primary_10_1109_TCCN_2022_3177522
crossref_primary_10_1109_TPDS_2023_3277367
crossref_primary_10_1109_TNSM_2024_3379475
crossref_primary_10_1109_ACCESS_2023_3257029
crossref_primary_10_1016_j_asoc_2024_112405
crossref_primary_10_1002_ett_4824
crossref_primary_10_1007_s10586_022_03696_y
crossref_primary_10_1109_JIOT_2022_3164147
crossref_primary_10_1016_j_dcan_2022_05_006
crossref_primary_10_1145_3679013
crossref_primary_10_1016_j_aej_2024_06_071
crossref_primary_10_1007_s11042_022_14161_8
crossref_primary_10_1109_TSC_2024_3399653
crossref_primary_10_1016_j_neucom_2023_126739
crossref_primary_10_1109_TPDS_2022_3157258
crossref_primary_10_1109_TIFS_2025_3546841
crossref_primary_10_1145_3570953
crossref_primary_10_1016_j_jnca_2023_103795
crossref_primary_10_3390_a16010034
crossref_primary_10_1109_OJCOMS_2024_3506214
crossref_primary_10_1109_TMC_2024_3477616
crossref_primary_10_1109_JIOT_2023_3280069
crossref_primary_10_1109_JSAC_2022_3213347
crossref_primary_10_3390_electronics12112500
crossref_primary_10_3390_sym15040924
crossref_primary_10_1109_TDSC_2024_3417531
crossref_primary_10_1016_j_bcra_2022_100089
crossref_primary_10_1016_j_comcom_2024_04_024
crossref_primary_10_1007_s00521_024_09715_w
crossref_primary_10_1109_TBDATA_2024_3362191
crossref_primary_10_3390_s22031094
crossref_primary_10_3390_electronics13111999
crossref_primary_10_32604_cmes_2024_030084
crossref_primary_10_1016_j_autcon_2022_104638
crossref_primary_10_1109_COMST_2023_3305312
crossref_primary_10_1109_TMC_2023_3325334
crossref_primary_10_1155_2021_9322368
crossref_primary_10_1109_TSUSC_2023_3341440
crossref_primary_10_1108_IJICC_05_2022_0126
crossref_primary_10_1109_TSC_2023_3238690
crossref_primary_10_1145_3676164
crossref_primary_10_1109_TPDS_2021_3138848
crossref_primary_10_3390_electronics12204214
crossref_primary_10_3390_su162310552
crossref_primary_10_3390_electronics13224395
crossref_primary_10_1109_JIOT_2023_3282732
Cites_doi 10.1007/978-3-319-70278-0_11
10.1145/3298981
10.1109/BigData47090.2019.9005992
10.1007/978-3-319-78597-4
10.1007/978-3-540-70583-3_40
10.1109/TVLSI.2017.2661746
10.1109/CVPRW.2019.00339
10.1109/SP.2014.37
10.1007/978-3-540-78524-8_22
10.1007/978-3-642-00457-5_34
10.1109/BLOC.2019.8751419
10.1145/3195970.3196023
10.3390/e21080723
10.1109/NCA.2017.8171383
10.1007/978-3-642-25560-1_2
10.1109/MIS.2020.2988525
10.1109/SP.2013.39
10.1016/j.comcom.2020.07.045
10.1109/ICDCS.2019.00121
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2021.3056773
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2085
ExternalDocumentID 10_1109_TPDS_2021_3056773
9347812
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education of the People's Republic of China; Ministry of Education of China
  grantid: 2020KJ010301
  funderid: 10.13039/501100002338
– fundername: National Natural Science Foundation of China
  grantid: 61772080; 62072044
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB2102600
  funderid: 10.13039/501100012166
– fundername: Engineering Research Center of Intelligent Technology and Educational Application
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-85808e26b347ecd2dc1999da33f334dfa10821ec07c928a79e6bebd05b44c7843
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Sun Jun 29 14:13:46 EDT 2025
Tue Jul 01 03:58:39 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Wed Aug 27 02:33:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-85808e26b347ecd2dc1999da33f334dfa10821ec07c928a79e6bebd05b44c7843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8847-8345
0000-0002-6698-3623
0000-0001-6007-5643
0000-0001-5912-4647
PQID 2498672954
PQPubID 85437
PageCount 12
ParticipantIDs crossref_primary_10_1109_TPDS_2021_3056773
crossref_citationtrail_10_1109_TPDS_2021_3056773
ieee_primary_9347812
proquest_journals_2498672954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref36
ref14
ref31
ref30
gilad-bachrach (ref17) 2016
bonawitz (ref8) 2019
ref19
lecun and (ref16) 2010
ref18
nguyen (ref3) 2018; 14
king (ref4) 2013; 1
cheng (ref11) 2019
ref24
ref26
ref25
mcmahan (ref13) 2017
ref20
ref22
kone?n? (ref10) 2016
ref21
(ref1) 2019
king (ref2) 2012; 19
krizhevsky (ref27) 2009
liu (ref12) 2018
krizhevsky (ref28) 2012
graham (ref29) 2014
ref7
ref9
ball (ref33) 2017; 2017
ref6
ref5
(ref32) 2019
pinkas (ref23) 2009
References_xml – ident: ref35
  doi: 10.1007/978-3-319-70278-0_11
– ident: ref9
  doi: 10.1145/3298981
– ident: ref14
  doi: 10.1109/BigData47090.2019.9005992
– start-page: 250
  year: 2009
  ident: ref23
  article-title: Secure two-party computation is practical
  publication-title: Proc Int Conf Theory Appl Cryptol Inf Secur
– year: 2018
  ident: ref12
  article-title: Secure federated transfer learning
– ident: ref19
  doi: 10.1007/978-3-319-78597-4
– year: 2019
  ident: ref8
  article-title: Towards federated learning at scale: System design
– ident: ref22
  doi: 10.1007/978-3-540-70583-3_40
– ident: ref31
  doi: 10.1109/TVLSI.2017.2661746
– ident: ref6
  doi: 10.1109/CVPRW.2019.00339
– volume: 2017
  year: 2017
  ident: ref33
  article-title: Proofs of useful work
  publication-title: IACR Cryptol ePrint Arch
– ident: ref34
  doi: 10.1109/SP.2014.37
– ident: ref25
  doi: 10.1007/978-3-540-78524-8_22
– ident: ref26
  doi: 10.1007/978-3-642-00457-5_34
– year: 2010
  ident: ref16
  article-title: MNIST handwritten digit database
– start-page: 1273
  year: 2017
  ident: ref13
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref7
  doi: 10.1109/BLOC.2019.8751419
– ident: ref20
  doi: 10.1145/3195970.3196023
– year: 2014
  ident: ref29
  article-title: Fractional max-pooling
  publication-title: CoRR
– year: 2019
  ident: ref1
  article-title: Bitcoin energy consumption index
– ident: ref36
  doi: 10.3390/e21080723
– ident: ref5
  doi: 10.1109/NCA.2017.8171383
– volume: 1
  year: 2013
  ident: ref4
  article-title: Primecoin: Cryptocurrency with prime number proof-of-work
– ident: ref24
  doi: 10.1007/978-3-642-25560-1_2
– start-page: 201
  year: 2016
  ident: ref17
  article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy
  publication-title: Proc Int Conf Mach Learn
– year: 2016
  ident: ref10
  article-title: Federated learning: Strategies for improving communication efficiency
– year: 2019
  ident: ref11
  article-title: SecureBoost: A lossless federated learning framework
– start-page: 1097
  year: 2012
  ident: ref28
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– year: 2009
  ident: ref27
  article-title: Learning multiple layers of features from tiny images
  publication-title: CiteSeer
– ident: ref15
  doi: 10.1109/MIS.2020.2988525
– volume: 14
  start-page: 101
  year: 2018
  ident: ref3
  article-title: A survey about consensus algorithms used in blockchain
  publication-title: J Inf Process Syst
– ident: ref21
  doi: 10.1109/SP.2013.39
– ident: ref30
  doi: 10.1016/j.comcom.2020.07.045
– volume: 19
  year: 2012
  ident: ref2
  article-title: PPCoin: Peer-to-peer crypto-currency with proof-of-stake
  publication-title: self-published paper
– year: 2019
  ident: ref32
– ident: ref18
  doi: 10.1109/ICDCS.2019.00121
SSID ssj0014504
Score 2.6280665
Snippet Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2074
SubjectTerms Algorithms
Blockchain
Blockchains
Collaboration
Computational modeling
consensus algorithm
Cryptography
Data models
Federated learning
Game theory
incentive mechanism
Leakage
Machine learning
Miners
Model accuracy
Privacy
Recycling
Task analysis
Training
Training data
Verification
Title Proof of Federated Learning: A Novel Energy-Recycling Consensus Algorithm
URI https://ieeexplore.ieee.org/document/9347812
https://www.proquest.com/docview/2498672954
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BT_AADIbWDSY_8ISWktROYvNWARUggZAAibfIH-cO0bVTSSdtf_3OiVvxpWlSFOXBjiz_7POd7-53APsk81GhcYkwXNNLYiKF94m2XttUojU6XOhfXhVnd-LiPr9fgm-LXBhEbILPsBs-G1--m9hZuCo7VDwkRpLAXSbDrc3VWngMRN6UCiTrIk8UbcPowcxSdXh7fXJDlmAv6wZ9uSz5izOoKaryRhI3x8tgAy7nA2ujSh67s9p07Z9XnI3_O_JNWI96Juu3C-MDLOF4CzbmNRxY3NJbsPaMkHAbzq9JkfaMnkEgmSA91LHIwDo8Yn12NfmFI3ba5AsmpHH-DomVQxaqfoaSGU-sPxpOpg_19x8f4W5went8lsRiC4nluaoTmUuCplcYGila13M2EBQ4zbnnXDivM1IWMrRpaVVP6lJhYQjjNDdC2FIKvgMr48kYPwHjpZLcOWsL5UkOa6Ox8BlHLLkVXuQdSOfTX9nIRB4KYoyqxiJJVRUQqwJiVUSsAweLLj9bGo5_Nd4OCCwaxsnvwO4c4ypu1KeKrE9ZlMHZ-fn9Xl9gNfy7jfnbhZV6OsM90kNq87VZgH8BvkTZvw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-atgNw2MYGorCBD5wQ6ZLaSWxuFazqYK0m0Um7Rf54LtO6Fm0p0vbX7zlxK76EkKIoB1ux_LOf3_P7-AG8JZmPCo1LhOGaXhITKbxPtPXaphKt0eFCfzQuhufi80V-sQHv17kwiNgEn2E3fDa-fLewy3BVdqR4SIwkgbuVh2TcNltr7TMQeUMWSPZFnijaiNGHmaXqaHL26SvZgr2sGzTmsuS_nEINrcofsrg5YAY7MFoNrY0rueoua9O1979Vbfzfse_CdtQ0Wb9dGk9hA-d7sLNicWBxU-_Bk59KEu7DyRmp0p7RMwhlJkgTdSzWYJ1-YH02XvzAGTtuMgYT0jnvQmrllAXez0Caccv6s-ni5rL-dv0MzgfHk4_DJNItJJbnqk5kLgmcXmFopGhdz9lQosBpzj3nwnmdkbqQoU1Lq3pSlwoLQyinuRHCllLw57A5X8zxBTBeKsmds7ZQniSxNhoLn3HEklvhRd6BdDX9lY21yAMlxqxqbJJUVQGxKiBWRcQ68G7d5XtbiONfjfcDAuuGcfI7cLDCuIpb9bYi-1MWZXB3vvx7rzfwaDgZnVanJ-Mvr-Bx-E8bAXgAm_XNEg9JK6nN62YxPgBDMd0H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proof+of+Federated+Learning%3A+A+Novel+Energy-Recycling+Consensus+Algorithm&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Qu%2C+Xidi&rft.au=Wang%2C+Shengling&rft.au=Hu%2C+Qin&rft.au=Cheng%2C+Xiuzhen&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=32&rft.issue=8&rft.spage=2074&rft_id=info:doi/10.1109%2FTPDS.2021.3056773&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon