Proof of Federated Learning: A Novel Energy-Recycling Consensus Algorithm

Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 32; no. 8; pp. 2074 - 2085
Main Authors Qu, Xidi, Wang, Shengling, Hu, Qin, Cheng, Xiuzhen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Proof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely proof of federated learning (PoFL), where the energy originally wasted to solve difficult but meaningless puzzles in PoW is reinvested to federated learning. Federated learning and pooled-mining, a trend of PoW, have a natural fit in terms of organization structure. However, the separation between the data usufruct and ownership in blockchain lead to data privacy leakage in model training and verification, deviating from the original intention of federal learning. To address the challenge, a reverse game-based data trading mechanism and a privacy-preserving model verification mechanism are proposed. The former can guard against training data leakage while the latter verifies the accuracy of a trained model with privacy preservation of the task requester's test data as well as the pool's submitted model. To the best of our knowledge, our article is the first work to employ federal learning as the proof of work for blockchain. Extensive simulations based on synthetic and real-world data demonstrate the effectiveness and efficiency of our proposed mechanisms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2021.3056773