Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites

In this study, a novel reclaimed clay nanofiller was used to manufacture low-density polyethylene (LDPE)/Oil based mud filler (OBMF) nanocomposites by a melt compounding process. The mechanical testing samples were manufactured using injection moulding. The effect of reclaimed clay minerals influenc...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer research Vol. 26; no. 6; pp. 1 - 14
Main Authors Siddique, Shohel, Smith, Grant David, Yates, Kyari, Mishra, Ajay Kumar, Matthews, Kerr, Csetenyi, Laszlo J, Njuguna, James
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a novel reclaimed clay nanofiller was used to manufacture low-density polyethylene (LDPE)/Oil based mud filler (OBMF) nanocomposites by a melt compounding process. The mechanical testing samples were manufactured using injection moulding. The effect of reclaimed clay minerals influencing the crystallinity and the dispersion characteristics of this clay in LDPE matrix affecting the structural and thermal properties of the nanocomposites was investigated. It was observed that OBMFs were compatible with LDPE matrix which implies a strong interfacial interaction between the clay layers and polymer and that the influence of clay minerals present in OBMFs formed chemical bonds within the microstructure of the nanocomposites. The char yields of nanocomposites increased with OBMFs content. The T D5% and T D50% (onset degradation temperature at 5 wt% loss and 50 wt% loss, respectively) of the LDPE nanocomposite with 10.0 wt% OBMFs was the highest (27 °C higher in T D5% and 54 °C higher in T D50% ) among the nanocomposites. Viscoelastic analysis data showed a sharp decrease in the storage modulus of OBMFs reinforced LDPE nanocomposites. The tan δ spectra presented a strong influence of the filler contents on the relaxation process of LDPE and its nanocomposites. An enhancement of mechanical properties of composites was identified which showed a gain of 14% Young’s modulus and a gain of 18% tensile strength at 10.0 wt% OBMFs loading compared to those properties of neat LDPE. The effect of filler dispersion in LDPE polymer matrix in relation to thermal stability was investigated and heat capacity data is employed to characterise changes in thermal characteristics relating to the nanomorphology of the materials.
ISSN:1022-9760
1572-8935
DOI:10.1007/s10965-019-1802-9