Set-Type Belief Propagation With Applications to Poisson Multi-Bernoulli SLAM
Belief propagation (BP) is a useful probabilistic inference algorithm for efficiently computing approximate marginal probability densities of random variables. However, in its standard form, BP is only applicable to the vector-type random variables with a fixed and known number of vector elements, w...
Saved in:
Published in | IEEE transactions on signal processing Vol. 72; pp. 1989 - 2005 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Belief propagation (BP) is a useful probabilistic inference algorithm for efficiently computing approximate marginal probability densities of random variables. However, in its standard form, BP is only applicable to the vector-type random variables with a fixed and known number of vector elements, while certain applications rely on random finite sets (RFSs) with an unknown number of vector elements. In this paper, we develop BP rules for factor graphs defined on sequences of RFSs where each RFS has an unknown number of elements, with the intention of deriving novel inference methods for RFSs. Furthermore, we show that vector-type BP is a special case of set-type BP, where each RFS follows the Bernoulli process. To demonstrate the validity of developed set-type BP, we apply it to the Poisson multi-Bernoulli (PMB) filter for simultaneous localization and mapping (SLAM), which naturally leads to a set-type BP PMB-SLAM method, which is analogous to a vector type SLAM method, subject to minor modifications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1053-587X 1941-0476 1941-0476 |
DOI: | 10.1109/TSP.2024.3383543 |