Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods

Assumed stress hybrid methods are known to improve the performance of standard displacement-based finite elements and are widely used in computational mechanics. The methods are based on the Hellinger–Reissner variational principle for the displacement and stress variables. This work analyzes two ex...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 200; no. 29; pp. 2421 - 2433
Main Authors Yu, Guozhu, Xie, Xiaoping, Carstensen, Carsten
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.07.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Assumed stress hybrid methods are known to improve the performance of standard displacement-based finite elements and are widely used in computational mechanics. The methods are based on the Hellinger–Reissner variational principle for the displacement and stress variables. This work analyzes two existing 4-node hybrid stress quadrilateral elements due to Pian and Sumihara [T.H.H. Pian, K. Sumihara, Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg. 20 (9) (1984) 1685–1695] and due to Xie and Zhou [X.P. Xie, T.X. Zhou, Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, Int. J. Numer. Methods Engrg. 59 (2004) 293–313], which behave robustly in numerical benchmark tests. For the finite elements, the isoparametric bilinear interpolation is used for the displacement approximation, while different piecewise-independent 5-parameter modes are employed for the stress approximation. We show that the two schemes are free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the relevant Lamé constant λ. We also establish the equivalence of the methods to two assumed enhanced strain schemes. Finally, we derive reliable and efficient residual-based a posteriori error estimators for the stress in L 2-norm and the displacement in H 1-norm, and verify the theoretical results by some numerical experiments.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2011.03.018