Ionospheric Total Electron Content Estimation Using GNSS Carrier Phase Observations Based on Zero-Difference Integer Ambiguity: Methodology and Assessment

Precise extraction of ionospheric total electron content (TEC) observations with high precision is the precondition for establishing high-precision ionospheric TEC models. Nowadays, there are several ways to extract TEC observations, e.g., raw-code method (Raw-C), phase-leveled code method (PL-C), a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 59; no. 1; pp. 817 - 830
Main Authors Ren, Xiaodong, Chen, Jun, Li, Xingxing, Zhang, Xiaohong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Precise extraction of ionospheric total electron content (TEC) observations with high precision is the precondition for establishing high-precision ionospheric TEC models. Nowadays, there are several ways to extract TEC observations, e.g., raw-code method (Raw-C), phase-leveled code method (PL-C), and undifferenced and uncombined precise point positioning method (UD-PPP); however, their accuracy is affected by multipath and noise. Considering the limitations of the three traditional methods, we try directly to use the phase observation based on zero-difference integer ambiguity to extract ionospheric observations, namely, PPP-Fixed method. The main goal of this work is to: 1) deduce the expression of ionospheric observables of these four extraction methods in a mathematical formula, especially the satellite and receiver hardware delays; 2) investigate the performance and precision of ionospheric observables extracted from different algorithms using two validation methods, i.e., the co-location experiment by calculating the single difference for each satellite, and the single-frequency PPP (SF-PPP) test by two co-location stations; and 3) use the short arc experiment to demonstrate the advantages of the PPP-Fixed method. The results show that single-difference mean errors of TEC extracted by PL-C, UD-PPP, and PPP-Fixed are 1.81, 0.59, and 0.15 TEC unit (TECU), respectively, and their corresponding maximum single-difference values are 5.12, 1.68, and 0.43 TECU, respectively. Compared with PL-C, the precision of the TEC observations extracted by the PPP-Fixed method is improved by 91.7%, while it is 67.3% for UD-PPP. The SF-PPP experiment shows that PPP-Fixed is the best among these methods in terms of convergence speed, correction accuracy, and reliability of positioning performance. Moreover, the PPP-Fixed method can achieve high accuracy even when the observed arc is short, e.g., within 40 min.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2020.2989131