Machine and Deep Learning Models for Stress Detection Using Multimodal Physiological Data

Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on mul...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; p. 1
Main Authors Abdelfattah, Eman, Joshi, Shreehar, Tiwari, Shreekar
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3525459

Cover

Loading…
Abstract Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on multimodal dataset from wearable sensors, focusing on processed metrics for the three-axis acceleration (ACC), electrocardiogram (ECG), blood volume pulse (BVP), body temperature (TEMP), respiration (RESP), electromyogram (EMG), and electrodermal activity (EDA) from the 15 subjects in the WESAD dataset to effectively classify four different states - baseline, stress, amusement, and meditation. Seven traditional machine learning algorithms - Logistic Regression, Gaussian Naïve Bayes Classifier, AdaBoost Classifier, XGB Classifier, Decision Trees Classifier, Extra Trees Classifier, and Random Forest Classifier and three widely used deep learning algorithms - Deep Neural Network, Convolutional Neural Network and Recurrent Neural Network were trained and tested on the dataset on two phases to predict the state of different subject at any given time. Our findings indicate that Recurrent Neural Networks achieved an F 1 score of 93% when trained on a selected set of subjects and tested on the data from different subjects. Traditional machine learning algorithms, including Random Forest, Extra Trees, and XGB Classifiers, on the other hand, each achieved an F 1 score of 99% when trained and tested on the data for the same set of subjects. Additionally, models performed better on chest data when trained and tested on the same subjects, while they perform better on wrist data when trained on a random group of subjects and tested on the remaining ones.
AbstractList Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on multimodal dataset from wearable sensors, focusing on processed metrics for the three-axis acceleration (ACC), electrocardiogram (ECG), blood volume pulse (BVP), body temperature (TEMP), respiration (RESP), electromyogram (EMG), and electrodermal activity (EDA) from the 15 subjects in the WESAD dataset to effectively classify four different states – baseline, stress, amusement, and meditation. Seven traditional machine learning algorithms – Logistic Regression, Gaussian Naïve Bayes Classifier, AdaBoost Classifier, XGB Classifier, Decision Trees Classifier, Extra Trees Classifier, and Random Forest Classifier and three widely used deep learning algorithms – Deep Neural Network, Convolutional Neural Network and Recurrent Neural Network were trained and tested on the dataset on two phases to predict the state of different subject at any given time. Our findings indicate that Recurrent Neural Networks achieved an F1 score of 93% when trained on a selected set of subjects and tested on the data from different subjects. Traditional machine learning algorithms, including Random Forest, Extra Trees, and XGB Classifiers, on the other hand, each achieved an F1 score of 99% when trained and tested on the data for the same set of subjects. Additionally, models performed better on chest data when trained and tested on the same subjects, while they perform better on wrist data when trained on a random group of subjects and tested on the remaining ones.
Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on multimodal dataset from wearable sensors, focusing on processed metrics for the three-axis acceleration (ACC), electrocardiogram (ECG), blood volume pulse (BVP), body temperature (TEMP), respiration (RESP), electromyogram (EMG), and electrodermal activity (EDA) from the 15 subjects in the WESAD dataset to effectively classify four different states - baseline, stress, amusement, and meditation. Seven traditional machine learning algorithms - Logistic Regression, Gaussian Naïve Bayes Classifier, AdaBoost Classifier, XGB Classifier, Decision Trees Classifier, Extra Trees Classifier, and Random Forest Classifier and three widely used deep learning algorithms - Deep Neural Network, Convolutional Neural Network and Recurrent Neural Network were trained and tested on the dataset on two phases to predict the state of different subject at any given time. Our findings indicate that Recurrent Neural Networks achieved an F 1 score of 93% when trained on a selected set of subjects and tested on the data from different subjects. Traditional machine learning algorithms, including Random Forest, Extra Trees, and XGB Classifiers, on the other hand, each achieved an F 1 score of 99% when trained and tested on the data for the same set of subjects. Additionally, models performed better on chest data when trained and tested on the same subjects, while they perform better on wrist data when trained on a random group of subjects and tested on the remaining ones.
Author Abdelfattah, Eman
Tiwari, Shreekar
Joshi, Shreehar
Author_xml – sequence: 1
  givenname: Eman
  orcidid: 0009-0002-9967-3653
  surname: Abdelfattah
  fullname: Abdelfattah, Eman
  organization: School of Computer Science & Engineering, Sacred Heart University, Fairfield, CT, USA
– sequence: 2
  givenname: Shreehar
  surname: Joshi
  fullname: Joshi, Shreehar
  organization: The Boring Company, Las Vegas, NV, USA
– sequence: 3
  givenname: Shreekar
  surname: Tiwari
  fullname: Tiwari, Shreekar
  organization: Pulchowk Campus, Institute of Engineering, Tribhuwan University, Kathmandu, Nepal
BookMark eNpNUU1PGzEQtSqQSim_gB5W6jmpvV577SMK0CIFUSlw4GSN7XFwtKxTe3Pg39ewCDGX-XrvzUjvGzka04iEnDO6ZIzqXxer1dVms2xp2y25aEUn9Bdy0jKpF1xwefSp_krOStnRGqqORH9CHm_BPcURGxh9c4m4b9YIeYzjtrlNHofShJSbzZSxlLqf0E0xjc1DeUMchik-Jw9D8_fppcQ0pG10tbuECb6T4wBDwbP3fEoerq_uV38W67vfN6uL9cJxoadFD5wFwYMPljvvEYNVvdJee_Cytwwt10J1QslgraXU9q3QqHhtpEQu-Sm5mXV9gp3Z5_gM-cUkiOZtkPLWQJ6iG9C0TjAQIIX1rgvQAwamqOi98qGVDKrWz1lrn9O_A5bJ7NIhj_V9w5ngmjHOeEXxGeVyKiVj-LjKqHm1xMyWmFdLzLsllfVjZkVE_MRQLRWd5v8BZ42KZQ
CODEN IAECCG
Cites_doi 10.1007/s10994-006-6226-1
10.1097/acm.0b013e3181b37b8f
10.1109/TITB.2011.2169804
10.1007/978-3-319-54283-6_3
10.1162/neco.2006.18.7.1527
10.3390/s24030947
10.1111/j.1524-6175.2001.00478.x
10.1145/3242969.3242985
10.3390/s23052821
10.3390/s24041096
10.1006/jcss.1997.1504
10.1111/j.2517-6161.1958.tb00292.x
10.1145/2939672.2939785
10.1109/ACCESS.2021.3085502
10.1109/ACIIW52867.2021.9666272
10.1007/978-1-4419-9326-7_5
10.1016/j.bbe.2019.01.004
10.4103/jmss.jmss_78_20
10.1109/BigData.2015.7364066
10.1109/5.726791
10.4108/icst.pervasivehealth.2013.252357
10.1155/2016/5460732
10.1162/neco.1989.1.2.270
10.1145/3341163.3347741
10.3390/electronics11010155
10.1007/978-3-030-05921-7_20
10.3390/s19173805
10.3390/s131217472
10.3934/Neuroscience.2024006
10.1162/neco.1997.9.8.1735
10.1016/j.procs.2019.05.007
10.2196/33850
10.3390/s21103499
10.3390/bios12121153
10.1016/j.ijmedinf.2024.105401
10.1038/s41380-023-02047-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3525459
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_2c51a5a65bdc4fa7aef18057d8df261a
10_1109_ACCESS_2024_3525459
10820549
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-7a31f53fdfb3cddeefb8789d9dad67b1eb39584586fbbb00b7259e83bbb66e363
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:58 EDT 2025
Mon Jun 30 13:20:07 EDT 2025
Tue Jul 01 03:03:04 EDT 2025
Wed Aug 27 01:58:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-7a31f53fdfb3cddeefb8789d9dad67b1eb39584586fbbb00b7259e83bbb66e363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-9967-3653
0009-0003-0857-8405
0009-0000-8935-8436
OpenAccessLink https://doaj.org/article/2c51a5a65bdc4fa7aef18057d8df261a
PQID 3153911313
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3525459
doaj_primary_oai_doaj_org_article_2c51a5a65bdc4fa7aef18057d8df261a
proquest_journals_3153911313
ieee_primary_10820549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Patel (ref21) 2021; 10
ref35
John (ref36)
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref38
ref19
ref18
Hsieh (ref8)
Ghosh (ref6) 2022; 12
Fang (ref7)
Praveenkumar (ref9)
ref24
Breiman (ref39) 1984
Rizwan (ref10)
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
Schmidt (ref16) 2018
ref43
ref28
ref27
ref29
ref4
ref3
Schmidt (ref5)
ref40
References_xml – ident: ref41
  doi: 10.1007/s10994-006-6226-1
– ident: ref1
  doi: 10.1097/acm.0b013e3181b37b8f
– ident: ref24
  doi: 10.1109/TITB.2011.2169804
– ident: ref26
  doi: 10.1007/978-3-319-54283-6_3
– ident: ref42
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref31
  doi: 10.3390/s24030947
– ident: ref13
  doi: 10.1111/j.1524-6175.2001.00478.x
– volume: 10
  start-page: 1
  issue: 2
  year: 2021
  ident: ref21
  article-title: Survey on stress detection using multiple sensors through wearable devices
  publication-title: Int. J. Adv. Trends Comput. Sci. Eng.
– ident: ref14
  doi: 10.1145/3242969.3242985
– ident: ref15
  doi: 10.3390/s23052821
– ident: ref32
  doi: 10.3390/s24041096
– start-page: 330
  volume-title: Proc. IEEE Int. Workshop Signal Process. Syst. (SiPS)
  ident: ref8
  article-title: Feature selection framework for XGBoost based on electrodermal activity in stress detection
– ident: ref37
  doi: 10.1006/jcss.1997.1504
– ident: ref35
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– ident: ref38
  doi: 10.1145/2939672.2939785
– ident: ref29
  doi: 10.1109/ACCESS.2021.3085502
– ident: ref25
  doi: 10.1109/ACIIW52867.2021.9666272
– volume-title: Classification and Regression Trees
  year: 1984
  ident: ref39
– start-page: 2585
  volume-title: Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM)
  ident: ref7
  article-title: Prevent over-fitting and redundancy in physiological signal analyses for stress detection
– ident: ref40
  doi: 10.1007/978-1-4419-9326-7_5
– start-page: 122
  volume-title: Proc. Int. Conf. Electron. Syst. Intell. Comput. (ICESIC)
  ident: ref9
  article-title: Automatic stress recognition system with deep learning using multimodal psychological data
– ident: ref28
  doi: 10.1016/j.bbe.2019.01.004
– ident: ref3
  doi: 10.4103/jmss.jmss_78_20
– year: 2018
  ident: ref16
  article-title: Wearable affect and stress recognition: A review
  publication-title: arXiv:1811.08854
– start-page: 338
  volume-title: Proc. 11th Conf. Uncertainty Artif. Intell. (UAI)
  ident: ref36
  article-title: Estimating continuous distributions in Bayesian classifiers
– ident: ref30
  doi: 10.1109/BigData.2015.7364066
– ident: ref43
  doi: 10.1109/5.726791
– ident: ref22
  doi: 10.4108/icst.pervasivehealth.2013.252357
– ident: ref2
  doi: 10.1155/2016/5460732
– ident: ref44
  doi: 10.1162/neco.1989.1.2.270
– ident: ref17
  doi: 10.1145/3341163.3347741
– start-page: 364
  volume-title: Proc. Int. Conf. Robot., Elect. Signal Process. Techn. (ICREST)
  ident: ref10
  article-title: Design of a biosignal based stress detection system using machine learning techniques
– ident: ref18
  doi: 10.3390/electronics11010155
– ident: ref19
  doi: 10.1007/978-3-030-05921-7_20
– ident: ref23
  doi: 10.3390/s19173805
– ident: ref4
  doi: 10.3390/s131217472
– ident: ref34
  doi: 10.3934/Neuroscience.2024006
– ident: ref45
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref5
  publication-title: WESAD (Wearable stress and affect detection) dataset
– ident: ref27
  doi: 10.1016/j.procs.2019.05.007
– ident: ref12
  doi: 10.2196/33850
– ident: ref20
  doi: 10.3390/s21103499
– volume: 12
  start-page: 1153
  issue: 12
  year: 2022
  ident: ref6
  article-title: Classification of mental stress from wearable physiological sensors using image-encoding-based deep neural network
  publication-title: Biosensors
  doi: 10.3390/bios12121153
– ident: ref33
  doi: 10.1016/j.ijmedinf.2024.105401
– ident: ref11
  doi: 10.1038/s41380-023-02047-6
SSID ssj0000816957
Score 2.333902
Snippet Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Biological system modeling
Biomedical monitoring
Blood volume
Body temperature
Classification
Datasets
Decision trees
Deep learning
Electrocardiography
Feature extraction
Human factors
Machine learning
Neural Networks
Physiology
Psychological stress
Random forests
Recurrent neural networks
Stress Detection
Wrist
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH4qcyqHshTUKYt84NhMJ3G8HWFghJDg0iLRk-WVA20GQebSX8-z40EjKqTesipOPr_Nee97ACeyRqHh3FTWsFi1NojK0JRgYwy1LXPetal2-PqGX962V3fsrhSr51qYEEJOPguTtJn_5fuFW6alMpRwtFcY0GzABkZuQ7HW64JK6iChmCjMQvVUfT-dzfAlMAZs2kli_WwTIema9ckk_aWryj-qONuX-RbcrEY2pJU8TJa9nbi_b0gb_3vo2_CpeJrkdJgaO_AhdLuwucY_-Bl-XedUykBM58l5CI-k0K3ek9Qj7fczQZeW_MjlJHi-z2lbHclpBiSX7v5ZeHxGTiNdaVFybnqzB7fzi5-zy6r0WqgcZaqvhKF1ZDT6aKlDlReilUIqr7zxXNgaY26FvgqTPFqLomoFxk1BUtzhPFBO92HULbrwBcjUOOWlR0UgVeuolJ6KGHlwzbT1jajH8G2FgX4cKDV0DkWmSg-Q6QSZLpCN4Szh9Hpp4sPOB_D76iJeunGsNsxwZnFyRSNMiLVEVxTHETFGNGPYS5isPW-AYwyHK9h1Ed5nTdEKoA2gNf36zm0H8LFJfYDzUswhjPqnZThC56S3x3lSvgCt2uND
  priority: 102
  providerName: IEEE
Title Machine and Deep Learning Models for Stress Detection Using Multimodal Physiological Data
URI https://ieeexplore.ieee.org/document/10820549
https://www.proquest.com/docview/3153911313
https://doaj.org/article/2c51a5a65bdc4fa7aef18057d8df261a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UUCvLASCCO46-xtFQVUlmgEkyWHdssEBAN_5-zk6JIDCyMTRM5eZc7v4vu3iF0IQk4Decms4aFrLReZIbGAhtjqC1Z5aoy9g4v7_liVd49safeqK9YE9bKA7fAXRcVI4YZzixcFowwPhAJJMNJF4D9J2oEe14vmUoxWBKumOhkhkiurifTKTwRJIRFeRUlQMuoTtrbipJifzdi5VdcTpvNfA_tdiwRT9q720dbvj5AOz3twEP0vExlkB6b2uGZ9x-4k0p9wXG-2esaAx3FD6kVBP5vUslVjVOJAE5tt2_vDtZIJaCbCIhnpjFDtJrfPk4XWTcnIasoU00mDCWB0eCCpRWEKx-sFFI55YzjwhLIlxXwDCZ5sBbczArIebyk8INzTzk9QoP6vfbHCOemUoAsOLFUZUWldFSEwH1V5KUrBBmhyw1k-qOVw9ApjciVbhHWEWHdITxCNxHWn1OjlnU6ABbWnYX1XxYeoWE0Sm89YC2Q1o7QeGMl3TneWlOI4BC_KaEn_7H2Kdou4sDf9M1ljAbN55c_AxbS2PP0wp2nhsFvFijbYQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPEpRFwr40GOzbOL4dSxbqgW6e2krlZPlJwdotmqzl_76jh1vtQIhcctTcfJ5Xs7MNwAHskah4dxU1rBYtTaIytCUYGMMtS1z3rWpdni-4LOL9tsluyzF6rkWJoSQk8_COG3mf_l-6VZpqQwlHO0VBjSP4QlL1bhDudbDkkrqIaGYKNxC9UR9OppO8TUwCmzaceL9bBMl6Yb9yTT9pa_KX8o4W5iTF7BYj21ILPk1XvV27O7-oG3878G_hOfF1yRHw-R4BY9CtwPbGwyEr-HHPCdTBmI6T45DuCaFcPUnSV3Sft8SdGrJWS4owfN9TtzqSE40ILl492rp8Rk5kXStR8mx6c0uXJx8OZ_OqtJtoXKUqb4ShtaR0eijpQ6VXohWCqm88sZzYWuMuhV6K0zyaC0KqxUYOQVJcYfzQDl9A1vdsgt7QCbGKS89qgKpWkel9FTEyINrJq1vRD2CwzUG-nog1dA5GJkoPUCmE2S6QDaCzwmnh0sTI3Y-gN9XFwHTjWO1YYYzi9MrGmFCrCU6oziOiFGiGcFuwmTjeQMcI9hfw66L-N5qinYArQCt6dt_3PYRns7O56f69Ovi-zt41qSuwHlhZh-2-ptVeI-uSm8_5Al6D6vl5os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+and+Deep+Learning+Models+for+Stress+Detection+Using+Multimodal+Physiological+Data&rft.jtitle=IEEE+access&rft.au=Eman+Abdelfattah&rft.au=Shreehar+Joshi&rft.au=Shreekar+Tiwari&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=4597&rft.epage=4608&rft_id=info:doi/10.1109%2FACCESS.2024.3525459&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2c51a5a65bdc4fa7aef18057d8df261a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon