Machine and Deep Learning Models for Stress Detection Using Multimodal Physiological Data
Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on mul...
Saved in:
Published in | IEEE access Vol. 13; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3525459 |
Cover
Loading…
Abstract | Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on multimodal dataset from wearable sensors, focusing on processed metrics for the three-axis acceleration (ACC), electrocardiogram (ECG), blood volume pulse (BVP), body temperature (TEMP), respiration (RESP), electromyogram (EMG), and electrodermal activity (EDA) from the 15 subjects in the WESAD dataset to effectively classify four different states - baseline, stress, amusement, and meditation. Seven traditional machine learning algorithms - Logistic Regression, Gaussian Naïve Bayes Classifier, AdaBoost Classifier, XGB Classifier, Decision Trees Classifier, Extra Trees Classifier, and Random Forest Classifier and three widely used deep learning algorithms - Deep Neural Network, Convolutional Neural Network and Recurrent Neural Network were trained and tested on the dataset on two phases to predict the state of different subject at any given time. Our findings indicate that Recurrent Neural Networks achieved an F 1 score of 93% when trained on a selected set of subjects and tested on the data from different subjects. Traditional machine learning algorithms, including Random Forest, Extra Trees, and XGB Classifiers, on the other hand, each achieved an F 1 score of 99% when trained and tested on the data for the same set of subjects. Additionally, models performed better on chest data when trained and tested on the same subjects, while they perform better on wrist data when trained on a random group of subjects and tested on the remaining ones. |
---|---|
AbstractList | Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on multimodal dataset from wearable sensors, focusing on processed metrics for the three-axis acceleration (ACC), electrocardiogram (ECG), blood volume pulse (BVP), body temperature (TEMP), respiration (RESP), electromyogram (EMG), and electrodermal activity (EDA) from the 15 subjects in the WESAD dataset to effectively classify four different states – baseline, stress, amusement, and meditation. Seven traditional machine learning algorithms – Logistic Regression, Gaussian Naïve Bayes Classifier, AdaBoost Classifier, XGB Classifier, Decision Trees Classifier, Extra Trees Classifier, and Random Forest Classifier and three widely used deep learning algorithms – Deep Neural Network, Convolutional Neural Network and Recurrent Neural Network were trained and tested on the dataset on two phases to predict the state of different subject at any given time. Our findings indicate that Recurrent Neural Networks achieved an F1 score of 93% when trained on a selected set of subjects and tested on the data from different subjects. Traditional machine learning algorithms, including Random Forest, Extra Trees, and XGB Classifiers, on the other hand, each achieved an F1 score of 99% when trained and tested on the data for the same set of subjects. Additionally, models performed better on chest data when trained and tested on the same subjects, while they perform better on wrist data when trained on a random group of subjects and tested on the remaining ones. Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal, electrical, and acoustic signals, can prevent related health issues. This study employs machine learning and deep learning techniques on multimodal dataset from wearable sensors, focusing on processed metrics for the three-axis acceleration (ACC), electrocardiogram (ECG), blood volume pulse (BVP), body temperature (TEMP), respiration (RESP), electromyogram (EMG), and electrodermal activity (EDA) from the 15 subjects in the WESAD dataset to effectively classify four different states - baseline, stress, amusement, and meditation. Seven traditional machine learning algorithms - Logistic Regression, Gaussian Naïve Bayes Classifier, AdaBoost Classifier, XGB Classifier, Decision Trees Classifier, Extra Trees Classifier, and Random Forest Classifier and three widely used deep learning algorithms - Deep Neural Network, Convolutional Neural Network and Recurrent Neural Network were trained and tested on the dataset on two phases to predict the state of different subject at any given time. Our findings indicate that Recurrent Neural Networks achieved an F 1 score of 93% when trained on a selected set of subjects and tested on the data from different subjects. Traditional machine learning algorithms, including Random Forest, Extra Trees, and XGB Classifiers, on the other hand, each achieved an F 1 score of 99% when trained and tested on the data for the same set of subjects. Additionally, models performed better on chest data when trained and tested on the same subjects, while they perform better on wrist data when trained on a random group of subjects and tested on the remaining ones. |
Author | Abdelfattah, Eman Tiwari, Shreekar Joshi, Shreehar |
Author_xml | – sequence: 1 givenname: Eman orcidid: 0009-0002-9967-3653 surname: Abdelfattah fullname: Abdelfattah, Eman organization: School of Computer Science & Engineering, Sacred Heart University, Fairfield, CT, USA – sequence: 2 givenname: Shreehar surname: Joshi fullname: Joshi, Shreehar organization: The Boring Company, Las Vegas, NV, USA – sequence: 3 givenname: Shreekar surname: Tiwari fullname: Tiwari, Shreekar organization: Pulchowk Campus, Institute of Engineering, Tribhuwan University, Kathmandu, Nepal |
BookMark | eNpNUU1PGzEQtSqQSim_gB5W6jmpvV577SMK0CIFUSlw4GSN7XFwtKxTe3Pg39ewCDGX-XrvzUjvGzka04iEnDO6ZIzqXxer1dVms2xp2y25aEUn9Bdy0jKpF1xwefSp_krOStnRGqqORH9CHm_BPcURGxh9c4m4b9YIeYzjtrlNHofShJSbzZSxlLqf0E0xjc1DeUMchik-Jw9D8_fppcQ0pG10tbuECb6T4wBDwbP3fEoerq_uV38W67vfN6uL9cJxoadFD5wFwYMPljvvEYNVvdJee_Cytwwt10J1QslgraXU9q3QqHhtpEQu-Sm5mXV9gp3Z5_gM-cUkiOZtkPLWQJ6iG9C0TjAQIIX1rgvQAwamqOi98qGVDKrWz1lrn9O_A5bJ7NIhj_V9w5ngmjHOeEXxGeVyKiVj-LjKqHm1xMyWmFdLzLsllfVjZkVE_MRQLRWd5v8BZ42KZQ |
CODEN | IAECCG |
Cites_doi | 10.1007/s10994-006-6226-1 10.1097/acm.0b013e3181b37b8f 10.1109/TITB.2011.2169804 10.1007/978-3-319-54283-6_3 10.1162/neco.2006.18.7.1527 10.3390/s24030947 10.1111/j.1524-6175.2001.00478.x 10.1145/3242969.3242985 10.3390/s23052821 10.3390/s24041096 10.1006/jcss.1997.1504 10.1111/j.2517-6161.1958.tb00292.x 10.1145/2939672.2939785 10.1109/ACCESS.2021.3085502 10.1109/ACIIW52867.2021.9666272 10.1007/978-1-4419-9326-7_5 10.1016/j.bbe.2019.01.004 10.4103/jmss.jmss_78_20 10.1109/BigData.2015.7364066 10.1109/5.726791 10.4108/icst.pervasivehealth.2013.252357 10.1155/2016/5460732 10.1162/neco.1989.1.2.270 10.1145/3341163.3347741 10.3390/electronics11010155 10.1007/978-3-030-05921-7_20 10.3390/s19173805 10.3390/s131217472 10.3934/Neuroscience.2024006 10.1162/neco.1997.9.8.1735 10.1016/j.procs.2019.05.007 10.2196/33850 10.3390/s21103499 10.3390/bios12121153 10.1016/j.ijmedinf.2024.105401 10.1038/s41380-023-02047-6 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3525459 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_2c51a5a65bdc4fa7aef18057d8df261a 10_1109_ACCESS_2024_3525459 10820549 |
Genre | orig-research |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-7a31f53fdfb3cddeefb8789d9dad67b1eb39584586fbbb00b7259e83bbb66e363 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:58 EDT 2025 Mon Jun 30 13:20:07 EDT 2025 Tue Jul 01 03:03:04 EDT 2025 Wed Aug 27 01:58:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-7a31f53fdfb3cddeefb8789d9dad67b1eb39584586fbbb00b7259e83bbb66e363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-9967-3653 0009-0003-0857-8405 0009-0000-8935-8436 |
OpenAccessLink | https://doaj.org/article/2c51a5a65bdc4fa7aef18057d8df261a |
PQID | 3153911313 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3525459 doaj_primary_oai_doaj_org_article_2c51a5a65bdc4fa7aef18057d8df261a proquest_journals_3153911313 ieee_primary_10820549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Patel (ref21) 2021; 10 ref35 John (ref36) ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref38 ref19 ref18 Hsieh (ref8) Ghosh (ref6) 2022; 12 Fang (ref7) Praveenkumar (ref9) ref24 Breiman (ref39) 1984 Rizwan (ref10) ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 Schmidt (ref16) 2018 ref43 ref28 ref27 ref29 ref4 ref3 Schmidt (ref5) ref40 |
References_xml | – ident: ref41 doi: 10.1007/s10994-006-6226-1 – ident: ref1 doi: 10.1097/acm.0b013e3181b37b8f – ident: ref24 doi: 10.1109/TITB.2011.2169804 – ident: ref26 doi: 10.1007/978-3-319-54283-6_3 – ident: ref42 doi: 10.1162/neco.2006.18.7.1527 – ident: ref31 doi: 10.3390/s24030947 – ident: ref13 doi: 10.1111/j.1524-6175.2001.00478.x – volume: 10 start-page: 1 issue: 2 year: 2021 ident: ref21 article-title: Survey on stress detection using multiple sensors through wearable devices publication-title: Int. J. Adv. Trends Comput. Sci. Eng. – ident: ref14 doi: 10.1145/3242969.3242985 – ident: ref15 doi: 10.3390/s23052821 – ident: ref32 doi: 10.3390/s24041096 – start-page: 330 volume-title: Proc. IEEE Int. Workshop Signal Process. Syst. (SiPS) ident: ref8 article-title: Feature selection framework for XGBoost based on electrodermal activity in stress detection – ident: ref37 doi: 10.1006/jcss.1997.1504 – ident: ref35 doi: 10.1111/j.2517-6161.1958.tb00292.x – ident: ref38 doi: 10.1145/2939672.2939785 – ident: ref29 doi: 10.1109/ACCESS.2021.3085502 – ident: ref25 doi: 10.1109/ACIIW52867.2021.9666272 – volume-title: Classification and Regression Trees year: 1984 ident: ref39 – start-page: 2585 volume-title: Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM) ident: ref7 article-title: Prevent over-fitting and redundancy in physiological signal analyses for stress detection – ident: ref40 doi: 10.1007/978-1-4419-9326-7_5 – start-page: 122 volume-title: Proc. Int. Conf. Electron. Syst. Intell. Comput. (ICESIC) ident: ref9 article-title: Automatic stress recognition system with deep learning using multimodal psychological data – ident: ref28 doi: 10.1016/j.bbe.2019.01.004 – ident: ref3 doi: 10.4103/jmss.jmss_78_20 – year: 2018 ident: ref16 article-title: Wearable affect and stress recognition: A review publication-title: arXiv:1811.08854 – start-page: 338 volume-title: Proc. 11th Conf. Uncertainty Artif. Intell. (UAI) ident: ref36 article-title: Estimating continuous distributions in Bayesian classifiers – ident: ref30 doi: 10.1109/BigData.2015.7364066 – ident: ref43 doi: 10.1109/5.726791 – ident: ref22 doi: 10.4108/icst.pervasivehealth.2013.252357 – ident: ref2 doi: 10.1155/2016/5460732 – ident: ref44 doi: 10.1162/neco.1989.1.2.270 – ident: ref17 doi: 10.1145/3341163.3347741 – start-page: 364 volume-title: Proc. Int. Conf. Robot., Elect. Signal Process. Techn. (ICREST) ident: ref10 article-title: Design of a biosignal based stress detection system using machine learning techniques – ident: ref18 doi: 10.3390/electronics11010155 – ident: ref19 doi: 10.1007/978-3-030-05921-7_20 – ident: ref23 doi: 10.3390/s19173805 – ident: ref4 doi: 10.3390/s131217472 – ident: ref34 doi: 10.3934/Neuroscience.2024006 – ident: ref45 doi: 10.1162/neco.1997.9.8.1735 – ident: ref5 publication-title: WESAD (Wearable stress and affect detection) dataset – ident: ref27 doi: 10.1016/j.procs.2019.05.007 – ident: ref12 doi: 10.2196/33850 – ident: ref20 doi: 10.3390/s21103499 – volume: 12 start-page: 1153 issue: 12 year: 2022 ident: ref6 article-title: Classification of mental stress from wearable physiological sensors using image-encoding-based deep neural network publication-title: Biosensors doi: 10.3390/bios12121153 – ident: ref33 doi: 10.1016/j.ijmedinf.2024.105401 – ident: ref11 doi: 10.1038/s41380-023-02047-6 |
SSID | ssj0000816957 |
Score | 2.333902 |
Snippet | Stress can disrupt daily activities and harm health if prolonged or severe. Early detection of mental stress, indicated by changes in bio-signals like thermal,... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Biological system modeling Biomedical monitoring Blood volume Body temperature Classification Datasets Decision trees Deep learning Electrocardiography Feature extraction Human factors Machine learning Neural Networks Physiology Psychological stress Random forests Recurrent neural networks Stress Detection Wrist |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH4qcyqHshTUKYt84NhMJ3G8HWFghJDg0iLRk-WVA20GQebSX8-z40EjKqTesipOPr_Nee97ACeyRqHh3FTWsFi1NojK0JRgYwy1LXPetal2-PqGX962V3fsrhSr51qYEEJOPguTtJn_5fuFW6alMpRwtFcY0GzABkZuQ7HW64JK6iChmCjMQvVUfT-dzfAlMAZs2kli_WwTIema9ckk_aWryj-qONuX-RbcrEY2pJU8TJa9nbi_b0gb_3vo2_CpeJrkdJgaO_AhdLuwucY_-Bl-XedUykBM58l5CI-k0K3ek9Qj7fczQZeW_MjlJHi-z2lbHclpBiSX7v5ZeHxGTiNdaVFybnqzB7fzi5-zy6r0WqgcZaqvhKF1ZDT6aKlDlReilUIqr7zxXNgaY26FvgqTPFqLomoFxk1BUtzhPFBO92HULbrwBcjUOOWlR0UgVeuolJ6KGHlwzbT1jajH8G2FgX4cKDV0DkWmSg-Q6QSZLpCN4Szh9Hpp4sPOB_D76iJeunGsNsxwZnFyRSNMiLVEVxTHETFGNGPYS5isPW-AYwyHK9h1Ed5nTdEKoA2gNf36zm0H8LFJfYDzUswhjPqnZThC56S3x3lSvgCt2uND priority: 102 providerName: IEEE |
Title | Machine and Deep Learning Models for Stress Detection Using Multimodal Physiological Data |
URI | https://ieeexplore.ieee.org/document/10820549 https://www.proquest.com/docview/3153911313 https://doaj.org/article/2c51a5a65bdc4fa7aef18057d8df261a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UUCvLASCCO46-xtFQVUlmgEkyWHdssEBAN_5-zk6JIDCyMTRM5eZc7v4vu3iF0IQk4Decms4aFrLReZIbGAhtjqC1Z5aoy9g4v7_liVd49safeqK9YE9bKA7fAXRcVI4YZzixcFowwPhAJJMNJF4D9J2oEe14vmUoxWBKumOhkhkiurifTKTwRJIRFeRUlQMuoTtrbipJifzdi5VdcTpvNfA_tdiwRT9q720dbvj5AOz3twEP0vExlkB6b2uGZ9x-4k0p9wXG-2esaAx3FD6kVBP5vUslVjVOJAE5tt2_vDtZIJaCbCIhnpjFDtJrfPk4XWTcnIasoU00mDCWB0eCCpRWEKx-sFFI55YzjwhLIlxXwDCZ5sBbczArIebyk8INzTzk9QoP6vfbHCOemUoAsOLFUZUWldFSEwH1V5KUrBBmhyw1k-qOVw9ApjciVbhHWEWHdITxCNxHWn1OjlnU6ABbWnYX1XxYeoWE0Sm89YC2Q1o7QeGMl3TneWlOI4BC_KaEn_7H2Kdou4sDf9M1ljAbN55c_AxbS2PP0wp2nhsFvFijbYQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPEpRFwr40GOzbOL4dSxbqgW6e2krlZPlJwdotmqzl_76jh1vtQIhcctTcfJ5Xs7MNwAHskah4dxU1rBYtTaIytCUYGMMtS1z3rWpdni-4LOL9tsluyzF6rkWJoSQk8_COG3mf_l-6VZpqQwlHO0VBjSP4QlL1bhDudbDkkrqIaGYKNxC9UR9OppO8TUwCmzaceL9bBMl6Yb9yTT9pa_KX8o4W5iTF7BYj21ILPk1XvV27O7-oG3878G_hOfF1yRHw-R4BY9CtwPbGwyEr-HHPCdTBmI6T45DuCaFcPUnSV3Sft8SdGrJWS4owfN9TtzqSE40ILl492rp8Rk5kXStR8mx6c0uXJx8OZ_OqtJtoXKUqb4ShtaR0eijpQ6VXohWCqm88sZzYWuMuhV6K0zyaC0KqxUYOQVJcYfzQDl9A1vdsgt7QCbGKS89qgKpWkel9FTEyINrJq1vRD2CwzUG-nog1dA5GJkoPUCmE2S6QDaCzwmnh0sTI3Y-gN9XFwHTjWO1YYYzi9MrGmFCrCU6oziOiFGiGcFuwmTjeQMcI9hfw66L-N5qinYArQCt6dt_3PYRns7O56f69Ovi-zt41qSuwHlhZh-2-ptVeI-uSm8_5Al6D6vl5os |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+and+Deep+Learning+Models+for+Stress+Detection+Using+Multimodal+Physiological+Data&rft.jtitle=IEEE+access&rft.au=Eman+Abdelfattah&rft.au=Shreehar+Joshi&rft.au=Shreekar+Tiwari&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=4597&rft.epage=4608&rft_id=info:doi/10.1109%2FACCESS.2024.3525459&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2c51a5a65bdc4fa7aef18057d8df261a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |