Theoretical investigation of potential energetic material CL-20/TNBP co-crystal explosive based on molecular dynamics method

Context The exploration of CL-20 eutectic has been a subject of fervent interest within the realm of high-energy material modification. Through the utilization of density functional and molecular dynamics methods, an investigation into the characteristics of hexanitrohexaazaisowurtzitane (CL-20)/4,4...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 30; no. 10; p. 348
Main Authors Du, Jihang, Wang, Baoguo, Chen, Yafang, Li, Xinyi, Wang, Chunguang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Context The exploration of CL-20 eutectic has been a subject of fervent interest within the realm of high-energy material modification. Through the utilization of density functional and molecular dynamics methods, an investigation into the characteristics of hexanitrohexaazaisowurtzitane (CL-20)/4,4′,5,5′-tetranitro-2H,2′H-3,3′-bipyrazole (TNBP)within the molar ratio range of 4:1–1:4 was conducted. This inquiry encompassed the scrutiny of molecular interaction pathways, attachment force, initiating molecular distance, unified energy concentration, and physical characteristics. Furthermore, the EXPLO-5 was harnessed to prognosticate the explosion features and byproducts of unadulterated CL-20, TNBP, and CL-20/TNBP frameworks. The findings delineate a substantial differentiation in the electrostatic charge distribution on the surface between CL-20 and TNBP particles, signifying the preeminence of intermolecular interactions between disparate entities over those within similar entities, thus intimating the plausibility of the eutectic constitution. Remarkably, the identification of maximal attachment force at a molar ratio of 1:1 suggests the heightened likelihood of eutectic formation, propelled primarily by electrostatic and van der Waals forces. The resultant eutectic explosive evinces intermediate reactivity and exemplary mechanical attributes. Moreover, the detonation achievement of the eutectic with a molar proportion of 1:1 straddles that of CL-20 and TNBP, representing a new type of insensitive high-energy material. Methods The testing method employs the Materials Studio software and utilizes the molecular dynamics (MD) method to predict the properties of CL-20/TNBP cocrystals with different ratios and crystal faces. The MD simulation time step is set to 1 fs, and the total MD simulation time is 2 ns. An isothermal-isobaric (NPT) ensemble is used for the 2 ns MD simulation. The COMPASS force field is employed, with the temperature set to 295 K. The prediction of detonation characteristics and products is conducted using the EXPLO-5 software.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1610-2940
0948-5023
0948-5023
DOI:10.1007/s00894-024-06154-1