Experimental evaluation of acceleration-enhanced velocity estimation algorithms using a linear motion stage

In this paper, several velocity estimation algorithms are redesigned by incorporating an acceleration signal into conventional schemes. These algorithms include a state-space velocity observer (SSVO), a dynamically compensated velocity observer (DCVO), a tracking differentiator (TD), and a different...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Brazilian Society of Mechanical Sciences and Engineering Vol. 39; no. 2; pp. 543 - 551
Main Authors Lu, Yu-Sheng, Lee, Chung-Heng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, several velocity estimation algorithms are redesigned by incorporating an acceleration signal into conventional schemes. These algorithms include a state-space velocity observer (SSVO), a dynamically compensated velocity observer (DCVO), a tracking differentiator (TD), and a differentiator that uses the super-twisting algorithm (STA). These approaches are practically realized and experimentally compared to evaluate their utility for velocity estimation. This paper also shows that an accelerometer-enhanced velocity observer can be used to improve tracking performance for a feedback system. In contrast to conventional velocity observers, which merely use position information, an accelerometer-enhanced velocity observer combines a position sensor and an accelerometer to produce an improved velocity estimation. Experimental results are presented to show that an accelerometer-enhanced velocity estimator gives a better tracking performance for a linear motion stage. More specifically, a sliding-mode controller (SMC) is used to control the position of the payload on a linear motion stage, which allows accurate positioning within the limits of the resolution of the sensor, using an acceleration-enhanced velocity estimation.
ISSN:1678-5878
1806-3691
DOI:10.1007/s40430-016-0693-5