Right and left ventricular metabolites

Current methods of cardioplegic delivery may delay the recovery of right ventricular metabolism and function. To evaluate right and left ventricular metabolism, we performed biopsies in 37 patients undergoing elective coronary bypass operation with aortic root blood cardioplegia. Right ventricular t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of thoracic and cardiovascular surgery Vol. 96; no. 5; pp. 725 - 729
Main Authors Teoh, KH, Mullen, JC, Weisel, RD, Christakis, GT, Madonik, MM, Ivanov, J, Mickle, DA
Format Journal Article
LanguageEnglish
Published Philadelphia, PA AATS/WTSA 01.11.1988
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Current methods of cardioplegic delivery may delay the recovery of right ventricular metabolism and function. To evaluate right and left ventricular metabolism, we performed biopsies in 37 patients undergoing elective coronary bypass operation with aortic root blood cardioplegia. Right ventricular temperatures were warmer than left ventricular temperatures during cardioplegic arrest (right ventricle: 16.8 degrees +/- 3.8 degrees C, left ventricle: 14.3 degrees +/- 3.7 degrees C, p = 0.02). Adenosine triphosphate concentrations were lower in the right ventricle than in the left ventricle before cardioplegic arrest (right ventricle: 13.8 +/- 7.8 mmol/kg, left ventricle: 21.5 +/- 8.7 mmol/kg, p = 0.02). After reperfusion, right ventricular adenosine triphosphate concentrations fell to low levels (10 +/- 6 mmol/kg). Postoperative left and right ventricular high energy phosphate concentrations (the sum of adenosine triphosphate and creatine phosphate levels) correlated inversely with myocardial temperatures during cardioplegia (r = -0.29, p = 0.048). Aortic root cardioplegia did not cool the right ventricle as well as it did the left ventricle. The lower preoperative high energy phosphate concentrations may have increased the susceptibility of the right ventricle to ischemic injury. Alternative methods of myocardial preservation may improve right ventricular cooling and protection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-5223
1097-685X
DOI:10.1016/s0022-5223(19)35179-7