FEM simulation of single beard hair cutting with foil–blade-shaving system

The performance of dry-shavers depends on the interaction of the shaving components, hair and skin. Finite element models on the ABAQUS/Explicit platform are established to simulate the process of beard hair cutting. The skin is modelled as three-layer structure with a single cylindrical hair insert...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 46; pp. 271 - 284
Main Authors Fang, Gang, Köppl, Alois
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The performance of dry-shavers depends on the interaction of the shaving components, hair and skin. Finite element models on the ABAQUS/Explicit platform are established to simulate the process of beard hair cutting. The skin is modelled as three-layer structure with a single cylindrical hair inserted into the skin. The material properties of skin are considered as Neo-Hookean hyper-elastic (epidermis) and Prony visco-elastic (dermis and hypodermis) with finite deformations. The hair is modelled as elastic–plastic material with shear damage. The cutting system is composed of a blade and a foil of shaver. The simulation results of cutting processes are analyzed, including the skin compression, hair bending, hair cutting and hair severance. Calculations of cutting loads, skin stress, and hair damage show the impact of clearance, skin bulge height, blade dimension and shape on cutting results. The details show the build-up of finite element models for hair cutting, and highlight the challenges arising during model construction and numerical simulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2015.03.002