A Survey of Weight Vector Adjustment Methods for Decomposition-Based Multiobjective Evolutionary Algorithms

Multiobjective evolutionary algorithms based on decomposition (MOEA/D) have attracted tremendous attention and achieved great success in the fields of optimization and decision-making. MOEA/Ds work by decomposing the target multiobjective optimization problem (MOP) into multiple single-objective sub...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 24; no. 4; pp. 634 - 649
Main Authors Ma, Xiaoliang, Yu, Yanan, Li, Xiaodong, Qi, Yutao, Zhu, Zexuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiobjective evolutionary algorithms based on decomposition (MOEA/D) have attracted tremendous attention and achieved great success in the fields of optimization and decision-making. MOEA/Ds work by decomposing the target multiobjective optimization problem (MOP) into multiple single-objective subproblems based on a set of weight vectors. The subproblems are solved cooperatively in an evolutionary algorithm framework. Since weight vectors define the search directions and, to a certain extent, the distribution of the final solution set, the configuration of weight vectors is pivotal to the success of MOEA/Ds. The most straightforward method is to use predefined and uniformly distributed weight vectors. However, it usually leads to the deteriorated performance of MOEA/Ds on solving MOPs with irregular Pareto fronts. To deal with this issue, many weight vector adjustment methods have been proposed by periodically adjusting the weight vectors in a random, predefined, or adaptive way. This article focuses on weight vector adjustment on a simplex and presents a comprehensive survey of these weight vector adjustment methods covering the weight vector adaptation strategies, theoretical analyses, benchmark test problems, and applications. The current limitations, new challenges, and future directions of weight vector adjustment are also discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2020.2978158