Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids

This study combines the Nash–Cournot competition model and the stochastic optimization model to examine the impact of electric vehicle (EV) quantity fluctuations on microgrid operations, aiming to optimize energy usage in a competitive electricity market. Integrating distributed energy resources and...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 17; no. 15; p. 3726
Main Authors Lin, Faa-Jeng, Lu, Su-Ying, Hu, Ming-Che, Chen, Yen-Haw
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study combines the Nash–Cournot competition model and the stochastic optimization model to examine the impact of electric vehicle (EV) quantity fluctuations on microgrid operations, aiming to optimize energy usage in a competitive electricity market. Integrating distributed energy resources and bidirectional charging, microgrids offer a novel approach for energy optimization, aiding in renewable energy generation, peak demand management, and emission reduction. Empirical evidence highlights benefits in Taiwan’s electricity market and net-zero emissions target by 2050, with a case study demonstrating enhanced local renewable energy generation due to EVs and microgrid integration. As the number of EVs increases, electricity sales from microgrids decline, but electricity purchases remain stable. The degree of electricity liberalization also influences the supply and demand dynamics of the electricity market. Microgrids selling electricity only to the main grid increases total power consumption by 65.55 million MWh, reducing the market share of the state-owned utility (Taipower). Conversely, allowing retailers to purchase from microgrids increases total consumption by 30.87 million MWh with a slight market share decrease for Taipower. This study contributes to providing an adaptable and flexible general model for future studies to modify and expand based on different scenarios and variables to shape energy and environmental policies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en17153726