Quasi-Elliptic Higher-Order Tunable Bandpass Filter With Constant Absolute Bandwidth Using Synchronously Tuned Dual-Mode Resonators

Designing a higher-order tunable bandpass filter (BPF) with constant absolute bandwidth (ABW) and identical passband response at every passband frequency tuning state is considered a challenge. In this paper, we propose quasi-elliptic higher-order tunable BPFs that use synchronously tuned dual-mode...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 95051 - 95059
Main Authors Chaudhary, Girdhari, Jeong, Yongchae
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Designing a higher-order tunable bandpass filter (BPF) with constant absolute bandwidth (ABW) and identical passband response at every passband frequency tuning state is considered a challenge. In this paper, we propose quasi-elliptic higher-order tunable BPFs that use synchronously tuned dual-mode resonators, which can achieve identical passband frequency response and constant ABW. To achieve identical passband frequency response and constant ABW, all frequency-dependent coupling coefficient and external quality factor are physically realized using series capacitor and shunt varactor. To achieve quasi-elliptic response, transmission zeros are generated at lower and upper sides of passband through cross-coupling between dual-mode resonators. For experimental validation, a prototype of 4th and 6th-order BPFs are designed and fabricated. Experimental results reveal that the passband center frequency of the 4th-order tunable BPF can be tuned from 1.35 to 1.75 GHz (25.82%) with identical passband return loss (RL) of 20 dB and 1-dB constant ABW of 92 ± 1.3 MHz. Similarly, the passband center frequency of 6th-order BPF can be tuned from 1.38 to 1.77 GHz (27.76%) with an identical passband RL of 20 dB and 1-dB constant ABW of 98 ± 1.5 MHz.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3310934