Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles

In the present work, we analyzed the linear and nonlinear model suitabilities for adsorption data from aqueous As(III) removal by manganese ferrite nanoparticles (NPs). Hence, As(III) adsorption onto ferrite NPs was formerly analyzed by the intraparticle diffusion model (IPD). Then, adsorption kinet...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 1; no. 8; p. 950
Main Authors López-Luna, Jaime, Ramírez-Montes, Loida E., Martinez-Vargas, Sergio, Martínez, Arturo I., Mijangos-Ricardez, Oscar F., González-Chávez, María del Carmen A., Carrillo-González, Rogelio, Solís-Domínguez, Fernando A., Cuevas-Díaz, María del Carmen, Vázquez-Hipólito, Virgilio
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present work, we analyzed the linear and nonlinear model suitabilities for adsorption data from aqueous As(III) removal by manganese ferrite nanoparticles (NPs). Hence, As(III) adsorption onto ferrite NPs was formerly analyzed by the intraparticle diffusion model (IPD). Then, adsorption kinetics was described by the pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich models, while equilibrium adsorption was fitted to the Freundlich and Langmuir isotherms. Linear and nonlinear kinetic and isotherm models were solved and compared. The nonlinear data fitting was applied through the lsqcurvefit user-defined function (Matlab ver. 7.10.0). The initial adsorption rate was influenced by intraparticle diffusion and surface or film diffusion from the arsenic bulk solution to ferrite NPs, according to the IPD model. Adsorption kinetics of As(III) on manganese ferrite NPs was better described by the PSO model, followed by the Elovich model and then the PFO model. Equilibrium adsorption data were only worthily described by the Freundlich isotherm model. While the PSO, Elovich and Freundlich linear models showed even better fit than the nonlinear models, determinant bias was depicted for the PFO and Langmuir linear models. Thus, to use nonlinear adsorption models is highly advisable, having the Matlab lsqcurvefit function been proven very useful to face such task.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2523-3963
2523-3971
DOI:10.1007/s42452-019-0977-3