On the efficient modeling of generic source directivity in Gaussian beam tracing

For large-distance sound propagation with complex obstacles, the Gaussian beam tracing (GBT) method is often applied. An omnidirectional source model is commonly implemented in GBT, which, however, neglects the influence of generic directivity patterns of practical acoustic problems. There have been...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 149; no. 4; p. 2743
Main Authors Bian, Haoyu, Fattah, Ryu, Zhong, Siyang, Zhang, Xin
Format Journal Article
LanguageEnglish
Published United States 01.04.2021
Online AccessGet more information

Cover

Loading…
More Information
Summary:For large-distance sound propagation with complex obstacles, the Gaussian beam tracing (GBT) method is often applied. An omnidirectional source model is commonly implemented in GBT, which, however, neglects the influence of generic directivity patterns of practical acoustic problems. There have been efforts to synthesize or reproduce the target directivity pattern over an observation surface by using multiple distributed point sources. However, the efficiency and applicability of general applications still call for improvement. More specifically, rays from each of the point sources and their traces in the space should be computed and superposed to estimate the sound field, making the computational cost largely dependent on the complexity of the source directivity pattern. In this work, a complex-valued radiation function model is developed to realize the generic source directivity for GBT computation. One advantage of the method is that only one source is required such that computation cost can be greatly reduced. Rays are emitted from the source with direction-dependent amplitude and phase to realize the target directivity pattern. The development of the radiation function is associated with the GBT method. The verification cases show that this method can give good agreement with analytical or wave-based numerical solutions. Capabilities of modeling a complex source model of the spinning sound field to mimic the propeller noise are studied, and the result matches well with analytical solutions. Finally, a demonstration case of a four-propeller-powered drone in an urban region is conducted.
ISSN:1520-8524
DOI:10.1121/10.0004318