Modulating the intralayer and interlayer valley excitons in WS2 through interaction with AlGaN

The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS 2 through coupli...

Full description

Saved in:
Bibliographic Details
Published inScience China materials Vol. 66; no. 1; pp. 202 - 210
Main Authors Zeng, Xinlong, Kang, Wenyu, Zhou, Xiaowen, Li, Linglong, Xia, Yuanzheng, Liu, Haiyang, Yang, Chengbiao, Wu, Yaping, Wu, Zhiming, Li, Xu, Kang, Junyong
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS 2 through coupling to AlGaN with different doping levels. A notable redshift in exciton energy is observed by interfacing WS 2 with n-type AlGaN. More interestingly, an interlayer exciton peak emerges as a result of the formation of type-II band alignment in bilayer WS2. Both the interlayer and intralayer exciton energies are tunable by the twist angle of bilayer WS 2 . A high valley polarization of 82.2% is achieved in monolayer WS 2 at 13 K by coupling with n-type AlGaN, due to the faster exciton decay rate through electron-phonon interaction and the reduced intervalley scattering by doping-induced carrier screening. The valley polarization of interlayer exciton is higher than that of the intralayer exciton, due to the suppressed intervalley scattering resulting from the reduced electron-hole interaction. This work has presented a facile and efficient technique to modulate the excitonic properties of 2D materials. The reported high valley polarization in monolayer WS 2 and the discovery of interlayer exciton in bilayer WS 2 will trigger innovative study in valley exciton physics and facilitate emerging valleytronic applications.
AbstractList The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS 2 through coupling to AlGaN with different doping levels. A notable redshift in exciton energy is observed by interfacing WS 2 with n-type AlGaN. More interestingly, an interlayer exciton peak emerges as a result of the formation of type-II band alignment in bilayer WS2. Both the interlayer and intralayer exciton energies are tunable by the twist angle of bilayer WS 2 . A high valley polarization of 82.2% is achieved in monolayer WS 2 at 13 K by coupling with n-type AlGaN, due to the faster exciton decay rate through electron-phonon interaction and the reduced intervalley scattering by doping-induced carrier screening. The valley polarization of interlayer exciton is higher than that of the intralayer exciton, due to the suppressed intervalley scattering resulting from the reduced electron-hole interaction. This work has presented a facile and efficient technique to modulate the excitonic properties of 2D materials. The reported high valley polarization in monolayer WS 2 and the discovery of interlayer exciton in bilayer WS 2 will trigger innovative study in valley exciton physics and facilitate emerging valleytronic applications.
The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS2 through coupling to AlGaN with different doping levels. A notable redshift in exciton energy is observed by interfacing WS2 with n-type AlGaN. More interestingly, an interlayer exciton peak emerges as a result of the formation of type-II band alignment in bilayer WS2. Both the interlayer and intralayer exciton energies are tunable by the twist angle of bilayer WS2. A high valley polarization of 82.2% is achieved in monolayer WS2 at 13 K by coupling with n-type AlGaN, due to the faster exciton decay rate through electron-phonon interaction and the reduced intervalley scattering by doping-induced carrier screening. The valley polarization of interlayer exciton is higher than that of the intralayer exciton, due to the suppressed intervalley scattering resulting from the reduced electron-hole interaction. This work has presented a facile and efficient technique to modulate the excitonic properties of 2D materials. The reported high valley polarization in monolayer WS2 and the discovery of interlayer exciton in bilayer WS2 will trigger innovative study in valley exciton physics and facilitate emerging valleytronic applications.
Author Li, Linglong
Kang, Wenyu
Yang, Chengbiao
Li, Xu
Zeng, Xinlong
Zhou, Xiaowen
Xia, Yuanzheng
Kang, Junyong
Wu, Zhiming
Wu, Yaping
Liu, Haiyang
Author_xml – sequence: 1
  givenname: Xinlong
  surname: Zeng
  fullname: Zeng, Xinlong
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 2
  givenname: Wenyu
  surname: Kang
  fullname: Kang, Wenyu
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 3
  givenname: Xiaowen
  surname: Zhou
  fullname: Zhou, Xiaowen
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 4
  givenname: Linglong
  surname: Li
  fullname: Li, Linglong
  organization: School of Physics, Southeast University
– sequence: 5
  givenname: Yuanzheng
  surname: Xia
  fullname: Xia, Yuanzheng
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 6
  givenname: Haiyang
  surname: Liu
  fullname: Liu, Haiyang
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 7
  givenname: Chengbiao
  surname: Yang
  fullname: Yang, Chengbiao
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 8
  givenname: Yaping
  surname: Wu
  fullname: Wu, Yaping
  email: ypwu@xmu.edu.cn
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 9
  givenname: Zhiming
  surname: Wu
  fullname: Wu, Zhiming
  email: zmwu@xmu.edu.cn
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 10
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  email: xuliphys@xmu.edu.cn
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
– sequence: 11
  givenname: Junyong
  surname: Kang
  fullname: Kang, Junyong
  organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University
BookMark eNp9kEFPwyAUx4mZiXPuA3hr4rnKo6Wlx2XRaTL1oMabBIFuXSpMoLp9e2lqYmKiJ3jw__F4v2M0MtZohE4BnwPG5YXPMcuzFBOSEshYujtAYwJVleYUwyjucUVTRkhxhKbebzDGUFCAio3Ry61VXStCY1ZJWOukMcGJVuy1S4RRfandUH6IttX7RO9kE6zx8Sp5fiARcrZbrYekkKGxJvlswjqZtQtxd4IOa9F6Pf1eJ-jp6vJxfp0u7xc389kylRmtQpphUDXkkgpRipq-Yky1zGtVaqoYxYWkMUaZovGcsDyvK2CUKikyBRS0yibobHh36-x7p33gG9s5E1tyUhZAixIYjikYUtJZ752u-dY1b8LtOWDem-SDSR5N8t4k30Wm_MXE-UU_ZhTVtP-SZCB97GJW2v386W_oC2yhirU
CitedBy_id crossref_primary_10_1021_acsaelm_3c01450
crossref_primary_10_1021_acsnano_2c07469
Cites_doi 10.1038/srep09218
10.1039/C5NR08395H
10.1103/PhysRevB.84.155413
10.1038/srep18885
10.1039/C7TA06088B
10.1002/adom.201500301
10.1088/1361-648X/ab3fec
10.1021/nl3026357
10.1038/ncomms7242
10.1021/acs.nanolett.6b04171
10.1038/nnano.2012.95
10.1002/smll.201805503
10.1039/C5NR00383K
10.1021/acsami.1c06622
10.1021/acsami.9b04791
10.1021/acsnano.1c06955
10.1103/PhysRevB.100.041402
10.1088/0256-307X/38/1/017301
10.1002/adma.201703888
10.1007/s12274-019-2516-3
10.1038/nnano.2012.96
10.1103/PhysRevB.36.6712
10.1038/nnano.2016.49
10.1007/s12274-019-2497-2
10.1063/1.4966218
10.1021/nl500171v
10.1557/PROC-482-863
10.1021/acsnano.9b08004
10.1103/PhysRevB.88.121301
10.1021/acsaelm.0c00277
10.1021/acs.chemmater.0c03413
10.1038/ncomms1882
10.1126/science.aaw4194
10.1021/acsnano.5b03188
10.1073/pnas.1406960111
10.1088/1361-6633/abdb98
10.1021/acsanm.1c00192
10.1016/j.mseb.2020.114756
10.1016/j.optmat.2019.05.047
10.1038/natrevmats.2016.55
10.1038/nature13734
10.1021/acsanm.9b02170
10.1038/s41566-018-0204-6
10.1021/acs.nanolett.7b03667
10.1038/nnano.2014.176
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s40843-022-2138-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL 利用AlGaN耦合作用调控WS2层内和层间谷激子
EISSN 2199-4501
EndPage 210
ExternalDocumentID 10_1007_s40843_022_2138_x
GroupedDBID -EM
-SB
-S~
0R~
4.4
406
5VR
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAXDM
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BAPOH
BGNMA
CAJEB
CCEZO
CDRFL
CJPJV
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FA0
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HVGLF
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
Q--
RIG
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
U1G
U5L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7V
Z7X
ZMTXR
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c359t-301df14c5aa7af5b005ec4fd7e5d8506c535958d505e2844f91855dca3d151ed3
IEDL.DBID AGYKE
ISSN 2095-8226
IngestDate Wed Aug 13 09:24:15 EDT 2025
Tue Jul 01 01:00:56 EDT 2025
Thu Apr 24 23:14:04 EDT 2025
Fri Feb 21 02:46:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords interlayer exciton
valley polarization
WS
intralayer exciton
AlGaN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-301df14c5aa7af5b005ec4fd7e5d8506c535958d505e2844f91855dca3d151ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s40843-022-2138-x.pdf
PQID 2761567180
PQPubID 2044436
PageCount 9
ParticipantIDs proquest_journals_2761567180
crossref_primary_10_1007_s40843_022_2138_x
crossref_citationtrail_10_1007_s40843_022_2138_x
springer_journals_10_1007_s40843_022_2138_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China materials
PublicationTitleAbbrev Sci. China Mater
PublicationYear 2023
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Zhang, Gogna, Burg (CR33) 2019; 100
Nayak, Lin, Yeh (CR21) 2016; 8
Zhao, Li, Dong (CR3) 2021; 84
Ye, Xiao, Wang (CR13) 2016; 11
Kumar, Singh, Kumar (CR34) 2019; 31
Wang, Reeber (CR35) 2011; 482
Li, Li, Tian (CR5) 2020; 2
Plechinger, Nagler, Arora (CR15) 2016; 16
Jin, Lei, Wu (CR40) 2017; 5
Molina-Sánchez, Wirtz (CR23) 2011; 84
Jauregui, Joe, Pistunova (CR42) 2019; 366
Ye, Cao, O’Brien (CR9) 2014; 513
Di, Wang, Wei (CR20) 2020; 261
Hanbicki, Kioseoglou, Currie (CR31) 2016; 6
Zhu, Zeng, Dai (CR11) 2014; 111
Tränkle, Lach, Forchel (CR25) 1987; 36
Rivera, Schaibley, Jones (CR41) 2015; 6
Yuan, Huang (CR7) 2015; 7
Liu, Gao, Zhang (CR6) 2019; 12
Ji, Solís-Fernández, Erkılıç (CR10) 2021; 4
Jiang, Liu, Huang (CR16) 2014; 9
Cao, Wang, Han (CR39) 2012; 3
Chen, Shao, Yang (CR18) 2019; 11
Wan, Xiao, Li (CR43) 2018; 30
Chen, Li, Qi (CR4) 2021; 15
Wang, Chiu, Honz (CR45) 2018; 18
Liang, Zhang, Li (CR19) 2019; 12
Shao, Xue, Liu (CR28) 2020; 32
Mak, Xiao, Shan (CR1) 2018; 12
Schaibley, Yu, Clark (CR2) 2016; 1
Zhu, Chen, Cui (CR8) 2015; 5
Liu, Zheng, Liu (CR12) 2021; 13
Liu, Hu, Wang (CR32) 2019; 13
He, Li, Zhu (CR37) 2016; 109
Gutiérrez, Perea-López, Elías (CR24) 2013; 13
Zhang, Zhang, Zhang (CR27) 2019; 94
Zhu, Wang, Liu (CR38) 2013; 88
H, Mondal, Bid (CR44) 2020; 3
Zeng, Dai, Yao (CR29) 2012; 7
Mak, He, Shan (CR30) 2012; 7
Zheng, Sun, Zhou (CR17) 2015; 3
Feng, Cong, Konabe (CR14) 2019; 15
Jo, Ubrig, Berger (CR22) 2014; 14
Chen, Wan, Wen (CR26) 2015; 9
Qin, Zhu, Ye (CR36) 2021; 38
X Di (2138_CR20) 2020; 261
G Shao (2138_CR28) 2020; 32
AT Hanbicki (2138_CR31) 2016; 6
Z Wang (2138_CR45) 2018; 18
S Zhao (2138_CR3) 2021; 84
S Zheng (2138_CR17) 2015; 3
S Jo (2138_CR22) 2014; 14
H Zeng (2138_CR29) 2012; 7
Z Ye (2138_CR9) 2014; 513
Y Liu (2138_CR6) 2019; 12
T Jiang (2138_CR16) 2014; 9
L Yuan (2138_CR7) 2015; 7
L Zhang (2138_CR33) 2019; 100
K Wang (2138_CR35) 2011; 482
HG Ji (2138_CR10) 2021; 4
X Jin (2138_CR40) 2017; 5
B Zhu (2138_CR8) 2015; 5
K Chen (2138_CR26) 2015; 9
P Rivera (2138_CR41) 2015; 6
PG Chen (2138_CR4) 2021; 15
PK Nayak (2138_CR21) 2016; 8
A Molina-Sánchez (2138_CR23) 2011; 84
G Tränkle (2138_CR25) 1987; 36
J Liang (2138_CR19) 2019; 12
Y Liu (2138_CR32) 2019; 13
T Cao (2138_CR39) 2012; 3
R Li (2138_CR5) 2020; 2
JR Schaibley (2138_CR2) 2016; 1
J Chen (2138_CR18) 2019; 11
HR Gutiérrez (2138_CR24) 2013; 13
X Zhang (2138_CR27) 2019; 94
X He (2138_CR37) 2016; 109
B Zhu (2138_CR11) 2014; 111
CR Zhu (2138_CR38) 2013; 88
KF Mak (2138_CR1) 2018; 12
S Feng (2138_CR14) 2019; 15
Y Ye (2138_CR13) 2016; 11
KF Mak (2138_CR30) 2012; 7
D Kumar (2138_CR34) 2019; 31
G Liu (2138_CR12) 2021; 13
MS Qin (2138_CR36) 2021; 38
LA Jauregui (2138_CR42) 2019; 366
Y Wan (2138_CR43) 2018; 30
L P H (2138_CR44) 2020; 3
G Plechinger (2138_CR15) 2016; 16
References_xml – volume: 11
  start-page: 19381
  year: 2019
  end-page: 19387
  ident: CR18
  article-title: Synthesis of wafer-scale monolayer WS crystals toward the application in integrated electronic devices
  publication-title: ACS Appl Mater Interfaces
– volume: 16
  start-page: 7899
  year: 2016
  end-page: 7904
  ident: CR15
  article-title: Excitonic valley effects in monolayer WS under high magnetic fields
  publication-title: Nano Lett
– volume: 100
  start-page: 041402
  year: 2019
  ident: CR33
  article-title: Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure
  publication-title: Phys Rev B
– volume: 109
  start-page: 173105
  year: 2016
  ident: CR37
  article-title: Strain engineering in monolayer WS , MoS , and the WS /MoS heterostructure
  publication-title: Appl Phys Lett
– volume: 4
  start-page: 3717
  year: 2021
  end-page: 3724
  ident: CR10
  article-title: Stacking orientation-dependent photoluminescence pathways in artificially stacked bilayer WS nanosheets grown by chemical vapor deposition: Implications for spintronics and valleytronics
  publication-title: ACS Appl Nano Mater
– volume: 13
  start-page: 35097
  year: 2021
  end-page: 35104
  ident: CR12
  article-title: Enhancement of room-temperature photoluminescence and valley polarization of monolayer and bilayer WS chiral plasmonic coupling
  publication-title: ACS Appl Mater Interfaces
– volume: 30
  start-page: 1703888
  year: 2018
  ident: CR43
  article-title: Epitaxial single-layer MoS on GaN with enhanced valley helicity
  publication-title: Adv Mater
– volume: 94
  start-page: 213
  year: 2019
  end-page: 216
  ident: CR27
  article-title: Tunable photoluminescence of bilayer MoS interlayer twist
  publication-title: Optical Mater
– volume: 482
  start-page: 863
  year: 2011
  end-page: 868
  ident: CR35
  article-title: Thermal expansion of GaN and AIN
  publication-title: MRS Proc
– volume: 15
  start-page: 1805503
  year: 2019
  ident: CR14
  article-title: Engineering valley polarization of monolayer WS : A physical doping approach
  publication-title: Small
– volume: 31
  start-page: 505403
  year: 2019
  ident: CR34
  article-title: Thermal expansion coefficient and phonon dynamics in coexisting allotropes of monolayer WS probed by Raman scattering
  publication-title: J Phys-Condens Matter
– volume: 7
  start-page: 7402
  year: 2015
  end-page: 7408
  ident: CR7
  article-title: Exciton dynamics and annihilation in WS 2D semiconductors
  publication-title: Nanoscale
– volume: 5
  start-page: 9218
  year: 2015
  ident: CR8
  article-title: Exciton binding energy of monolayer WS
  publication-title: Sci Rep
– volume: 3
  start-page: 641
  year: 2020
  end-page: 647
  ident: CR44
  article-title: Electrical and chemical tuning of exciton lifetime in monolayer MoS for field-effect transistors
  publication-title: ACS Appl Nano Mater
– volume: 261
  start-page: 114756
  year: 2020
  ident: CR20
  article-title: Controlled synthesis of WS with different layers by tuning flow rates
  publication-title: Mater Sci Eng-B
– volume: 84
  start-page: 026401
  year: 2021
  ident: CR3
  article-title: Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges
  publication-title: Rep Prog Phys
– volume: 88
  start-page: 121301
  year: 2013
  ident: CR38
  article-title: Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS
  publication-title: Phys Rev B
– volume: 1
  start-page: 16055
  year: 2016
  ident: CR2
  article-title: Valleytronics in 2D materials
  publication-title: Nat Rev Mater
– volume: 36
  start-page: 6712
  year: 1987
  end-page: 6714
  ident: CR25
  article-title: General relation between band-gap renormalization and carrier density in two-dimensional electron-hole plasmas
  publication-title: Phys Rev B
– volume: 7
  start-page: 490
  year: 2012
  end-page: 493
  ident: CR29
  article-title: Valley polarization in MoS monolayers by optical pumping
  publication-title: Nat Nanotech
– volume: 2
  start-page: 1981
  year: 2020
  end-page: 1988
  ident: CR5
  article-title: Valley polarization in superacid-treated monolayer MoS
  publication-title: ACS Appl Electron Mater
– volume: 38
  start-page: 017301
  year: 2021
  ident: CR36
  article-title: Strain tunable berry curvature dipole, orbital magnetization and nonlinear hall effect in WSe monolayer
  publication-title: Chin Phys Lett
– volume: 15
  start-page: 18163
  year: 2021
  end-page: 18171
  ident: CR4
  article-title: Long-range directional routing and spatial selection of high-spin-purity valley Trion emission in monolayer WS
  publication-title: ACS Nano
– volume: 12
  start-page: 2802
  year: 2019
  end-page: 2807
  ident: CR19
  article-title: Carbon-nanoparticle-assisted growth of high quality bilayer WS by atmospheric pressure chemical vapor deposition
  publication-title: Nano Res
– volume: 13
  start-page: 14416
  year: 2019
  end-page: 14425
  ident: CR32
  article-title: Reduced binding energy and layer-dependent exciton dynamics in monolayer and multilayer WS
  publication-title: ACS Nano
– volume: 6
  start-page: 6242
  year: 2015
  ident: CR41
  article-title: Observation of long-lived interlayer excitons in monolayer MoSe -WSe heterostructures
  publication-title: Nat Commun
– volume: 9
  start-page: 9868
  year: 2015
  end-page: 9876
  ident: CR26
  article-title: Electronic properties of MoS -WS heterostructures synthesized with two-step lateral epitaxial strategy
  publication-title: ACS Nano
– volume: 12
  start-page: 451
  year: 2018
  end-page: 460
  ident: CR1
  article-title: Light-valley interactions in 2D semiconductors
  publication-title: Nat Photon
– volume: 9
  start-page: 825
  year: 2014
  end-page: 829
  ident: CR16
  article-title: Valley and band structure engineering of folded MoS bilayers
  publication-title: Nat Nanotech
– volume: 32
  start-page: 9721
  year: 2020
  end-page: 9729
  ident: CR28
  article-title: Twist angle-dependent optical responses in controllably grown WS vertical homojunctions
  publication-title: Chem Mater
– volume: 7
  start-page: 494
  year: 2012
  end-page: 498
  ident: CR30
  article-title: Control of valley polarization in monolayer MoS by optical helicity
  publication-title: Nat Nanotech
– volume: 3
  start-page: 887
  year: 2012
  ident: CR39
  article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide
  publication-title: Nat Commun
– volume: 18
  start-page: 137
  year: 2018
  end-page: 143
  ident: CR45
  article-title: Electrical tuning of interlayer exciton gases in WSe bilayers
  publication-title: Nano Lett
– volume: 12
  start-page: 2695
  year: 2019
  end-page: 2711
  ident: CR6
  article-title: Valleytronics in transition metal dichalcogenides materials
  publication-title: Nano Res
– volume: 13
  start-page: 3447
  year: 2013
  end-page: 3454
  ident: CR24
  article-title: Extraordinary room-temperature photoluminescence in triangular WS monolayers
  publication-title: Nano Lett
– volume: 11
  start-page: 598
  year: 2016
  end-page: 602
  ident: CR13
  article-title: Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide
  publication-title: Nat Nanotech
– volume: 84
  start-page: 155413
  year: 2011
  ident: CR23
  article-title: Phonons in single-layer and few-layer MoS and WS
  publication-title: Phys Rev B
– volume: 14
  start-page: 2019
  year: 2014
  end-page: 2025
  ident: CR22
  article-title: Mono- and bilayer WS light-emitting transistors
  publication-title: Nano Lett
– volume: 111
  start-page: 11606
  year: 2014
  end-page: 11611
  ident: CR11
  article-title: Anomalously robust valley polarization and valley coherence in bilayer WS
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 6035
  year: 2016
  end-page: 6042
  ident: CR21
  article-title: Robust room temperature valley polarization in monolayer and bilayer WS
  publication-title: Nanoscale
– volume: 3
  start-page: 1600
  year: 2015
  end-page: 1605
  ident: CR17
  article-title: Coupling and interlayer exciton in twist-stacked WS bilayers
  publication-title: Adv Opt Mater
– volume: 6
  start-page: 18885
  year: 2016
  ident: CR31
  article-title: Anomalous temperature-dependent spin-valley polarization in monolayer WS
  publication-title: Sci Rep
– volume: 513
  start-page: 214
  year: 2014
  end-page: 218
  ident: CR9
  article-title: Probing excitonic dark states in single-layer tungsten disulphide
  publication-title: Nature
– volume: 5
  start-page: 19884
  year: 2017
  end-page: 19891
  ident: CR40
  article-title: Cu GeS : A new hole transporting material for stable and efficient perovskite solar cells
  publication-title: J Mater Chem A
– volume: 366
  start-page: 870
  year: 2019
  end-page: 875
  ident: CR42
  article-title: Electrical control of interlayer exciton dynamics in atomically thin heterostructures
  publication-title: Science
– volume: 5
  start-page: 9218
  year: 2015
  ident: 2138_CR8
  publication-title: Sci Rep
  doi: 10.1038/srep09218
– volume: 8
  start-page: 6035
  year: 2016
  ident: 2138_CR21
  publication-title: Nanoscale
  doi: 10.1039/C5NR08395H
– volume: 84
  start-page: 155413
  year: 2011
  ident: 2138_CR23
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.84.155413
– volume: 6
  start-page: 18885
  year: 2016
  ident: 2138_CR31
  publication-title: Sci Rep
  doi: 10.1038/srep18885
– volume: 5
  start-page: 19884
  year: 2017
  ident: 2138_CR40
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA06088B
– volume: 3
  start-page: 1600
  year: 2015
  ident: 2138_CR17
  publication-title: Adv Opt Mater
  doi: 10.1002/adom.201500301
– volume: 31
  start-page: 505403
  year: 2019
  ident: 2138_CR34
  publication-title: J Phys-Condens Matter
  doi: 10.1088/1361-648X/ab3fec
– volume: 13
  start-page: 3447
  year: 2013
  ident: 2138_CR24
  publication-title: Nano Lett
  doi: 10.1021/nl3026357
– volume: 6
  start-page: 6242
  year: 2015
  ident: 2138_CR41
  publication-title: Nat Commun
  doi: 10.1038/ncomms7242
– volume: 16
  start-page: 7899
  year: 2016
  ident: 2138_CR15
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b04171
– volume: 7
  start-page: 490
  year: 2012
  ident: 2138_CR29
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2012.95
– volume: 15
  start-page: 1805503
  year: 2019
  ident: 2138_CR14
  publication-title: Small
  doi: 10.1002/smll.201805503
– volume: 7
  start-page: 7402
  year: 2015
  ident: 2138_CR7
  publication-title: Nanoscale
  doi: 10.1039/C5NR00383K
– volume: 13
  start-page: 35097
  year: 2021
  ident: 2138_CR12
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c06622
– volume: 11
  start-page: 19381
  year: 2019
  ident: 2138_CR18
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b04791
– volume: 15
  start-page: 18163
  year: 2021
  ident: 2138_CR4
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06955
– volume: 100
  start-page: 041402
  year: 2019
  ident: 2138_CR33
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.100.041402
– volume: 38
  start-page: 017301
  year: 2021
  ident: 2138_CR36
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/38/1/017301
– volume: 30
  start-page: 1703888
  year: 2018
  ident: 2138_CR43
  publication-title: Adv Mater
  doi: 10.1002/adma.201703888
– volume: 12
  start-page: 2802
  year: 2019
  ident: 2138_CR19
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2516-3
– volume: 7
  start-page: 494
  year: 2012
  ident: 2138_CR30
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2012.96
– volume: 36
  start-page: 6712
  year: 1987
  ident: 2138_CR25
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.36.6712
– volume: 11
  start-page: 598
  year: 2016
  ident: 2138_CR13
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2016.49
– volume: 12
  start-page: 2695
  year: 2019
  ident: 2138_CR6
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2497-2
– volume: 109
  start-page: 173105
  year: 2016
  ident: 2138_CR37
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4966218
– volume: 14
  start-page: 2019
  year: 2014
  ident: 2138_CR22
  publication-title: Nano Lett
  doi: 10.1021/nl500171v
– volume: 482
  start-page: 863
  year: 2011
  ident: 2138_CR35
  publication-title: MRS Proc
  doi: 10.1557/PROC-482-863
– volume: 13
  start-page: 14416
  year: 2019
  ident: 2138_CR32
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08004
– volume: 88
  start-page: 121301
  year: 2013
  ident: 2138_CR38
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.88.121301
– volume: 2
  start-page: 1981
  year: 2020
  ident: 2138_CR5
  publication-title: ACS Appl Electron Mater
  doi: 10.1021/acsaelm.0c00277
– volume: 32
  start-page: 9721
  year: 2020
  ident: 2138_CR28
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.0c03413
– volume: 3
  start-page: 887
  year: 2012
  ident: 2138_CR39
  publication-title: Nat Commun
  doi: 10.1038/ncomms1882
– volume: 366
  start-page: 870
  year: 2019
  ident: 2138_CR42
  publication-title: Science
  doi: 10.1126/science.aaw4194
– volume: 9
  start-page: 9868
  year: 2015
  ident: 2138_CR26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03188
– volume: 111
  start-page: 11606
  year: 2014
  ident: 2138_CR11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1406960111
– volume: 84
  start-page: 026401
  year: 2021
  ident: 2138_CR3
  publication-title: Rep Prog Phys
  doi: 10.1088/1361-6633/abdb98
– volume: 4
  start-page: 3717
  year: 2021
  ident: 2138_CR10
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.1c00192
– volume: 261
  start-page: 114756
  year: 2020
  ident: 2138_CR20
  publication-title: Mater Sci Eng-B
  doi: 10.1016/j.mseb.2020.114756
– volume: 94
  start-page: 213
  year: 2019
  ident: 2138_CR27
  publication-title: Optical Mater
  doi: 10.1016/j.optmat.2019.05.047
– volume: 1
  start-page: 16055
  year: 2016
  ident: 2138_CR2
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.55
– volume: 513
  start-page: 214
  year: 2014
  ident: 2138_CR9
  publication-title: Nature
  doi: 10.1038/nature13734
– volume: 3
  start-page: 641
  year: 2020
  ident: 2138_CR44
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.9b02170
– volume: 12
  start-page: 451
  year: 2018
  ident: 2138_CR1
  publication-title: Nat Photon
  doi: 10.1038/s41566-018-0204-6
– volume: 18
  start-page: 137
  year: 2018
  ident: 2138_CR45
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b03667
– volume: 9
  start-page: 825
  year: 2014
  ident: 2138_CR16
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2014.176
SSID ssj0001651198
Score 2.228084
Snippet The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms Bilayers
Chemistry and Materials Science
Chemistry/Food Science
Coupling
Decay rate
Doping
Electron phonon interactions
Electron-hole interaction
Excitons
Interlayers
Materials Science
Monolayers
Polarization
Red shift
Scattering
Two dimensional materials
Valleys
Title Modulating the intralayer and interlayer valley excitons in WS2 through interaction with AlGaN
URI https://link.springer.com/article/10.1007/s40843-022-2138-x
https://www.proquest.com/docview/2761567180
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YuOjBtxFF04MnTcmybXfhSIxANHARIl7clLZrjGQxshj01zvdByBRE45Nu81up535dqYzH8AF0wb_AuoGJaA8ysOQUdSBkrqacVHDXznP2EThTtdr9_ntQAyyPO5Jfts9D0kmmnqe7MadGrcxR5e6VTylCByLCD8cUYBio_V4t-Ra8WxwLOGiQwBB0QR6eTzzt3l-WqQFzFyJjCYGp7kDvfxV03smr5VpPKyor5Uqjmt-yy5sZwCUNNIdswcbJtqHraWyhAfw1BnrhNUreiaID8lL4gCWCM6JjLRtWiegbX5YJpZPYmYKFUM0wS7ycO-SjPwnHZlmThDr8CWNUUt2D6HfvOldt2nGw0AVE_WYog7QYZUrIaUvQ2EPrlE81L4R2ha8U8Jm99Y0gimD1o6HdQQBQivJNOIJo9kRFKJxZI6BcISLjBuX-b60tf-GDsIhLVjoI1LxhtUSOLksApUVKbdcGaNgXl45WboAly6wSxfMSnA5f-QtrdDx3-ByLuAgO6yTwPUR1nlopJ0SXOXyWnT_OdnJWqNPYdNS1afumzIU4vepOUNAEw_Psw38DSVt61o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LMwNBEO5CDjh4KyGYAxdqVTKP3eTgkPJIiOSCwsWazMwqJbWUBOHv-Ct-mJ59JChUOahy3JrZqd3pnu6vu6e7AVaYNmgFlAxSQLkODwLmoAyUDtWMiyKacq6xicL1hls95vun4nQAXtJcmOi2exqSjCR1L9mN54vcxhypQwt4SrvJTcqaeXpEO629ubeNRF2ldHfnaKvqJK0EHMVEqeMgG-ugwJWQ0pOBsLxnFA-0Z4S2NduUsAmqRY14wKDA5kEJ9ZjQSjKNKtFohusOQoajyY8WXqZcOau9c-W4NhgX9b5DwOKgynXT-OlX3_1RA_Zh7adIbKTgdsfhNd2a-F7L9cZ9p7mhnj9VjfznezcBYwnAJuX4REzCgAmnYPRd2cVpOK_f6KhrWXhJEP-Sq8jBLdH4IDLU9tE6Oe3jg-0080RMV6HgC9s4RE4OKUmaG8Uz48wQYh3apNyqyMYMHP_JD87CUHgTmjkgHOEw44Yyz5O2tmEzj3BPCxZ4iMTcZiEL-ZT2vkqKsNteIC2_Vz46IpWPpPItqfxuFtZ6r9zGFUh-mpxLGcpPhFHbpx7CVhdBSD4L6yl_9Ie_XWz-V7OXYbh6VD_wD_YatQUYoQgGY1dVDoY6d_dmEcFbp7mUHB4CF3_Nc2_OmUg8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LLwRBEK6wEuHgLdazD1zI2N1-zOweHDZYj2UjQXAxert7RMgQO1j-lL_iJ6mex3oEiYODY6d7Oj1d1VVfV3VVAcwzbfAWUDFIAeU6PAiYgzJQOlQzLsp4lXONDRTebbibh3z7WBx3wXMWCxO_ds9ckklMg83SFEaFGx0UOoFvvFjm1v9IHVrCE9tOX1XWzeMD3tlaK1trSOAFSmvrB6ubTlpWwFFMVCIHWVoHJa6ElJ4MhOVDo3igPSO0zd-mhA1WLWvEBgaFNw8qqNOEVpJpVI9GM5y3G3pwCV45Bz3VjZP6O7OOax1zcR08BC8Oql8386V-te6P2vAN4n7yysbKrjYIL9k2JW9cLpfvouayevqUQfIf7eMQDKTAm1STkzIMXSYcgf536RhH4XT3WsfVzMJzgriYXMSGb4mXEiJDbZvW-Gmb97YCzSMxbYUCMWxhFznapyQtepSMTCJGiDV0k-rVhmyMweGf_OA45MLr0EwA4QiTGTeUeZ60OQ-bRYSBWrDAQ4TmNkt5KGZ84Ks0ObutEXLld9JKx6TykVS-JZXfzsNi55ObJDPJT4OnM-byUyHV8qmHcNZFcFLMw1LGK2_d3042-avRc9C7t1bzd7Ya9Snoo4gREwvWNOSi2zszg5guas6m54jA2V-z3CtdxlEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+intralayer+and+interlayer+valley+excitons+in+WS2+through+interaction+with+AlGaN&rft.jtitle=Science+China+materials&rft.au=Zeng%2C+Xinlong&rft.au=Kang%2C+Wenyu&rft.au=Zhou%2C+Xiaowen&rft.au=Li%2C+Linglong&rft.date=2023-01-01&rft.pub=Science+China+Press&rft.issn=2095-8226&rft.eissn=2199-4501&rft.volume=66&rft.issue=1&rft.spage=202&rft.epage=210&rft_id=info:doi/10.1007%2Fs40843-022-2138-x&rft.externalDocID=10_1007_s40843_022_2138_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8226&client=summon