Modulating the intralayer and interlayer valley excitons in WS2 through interaction with AlGaN
The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS 2 through coupli...
Saved in:
Published in | Science China materials Vol. 66; no. 1; pp. 202 - 210 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS
2
through coupling to AlGaN with different doping levels. A notable redshift in exciton energy is observed by interfacing WS
2
with n-type AlGaN. More interestingly, an interlayer exciton peak emerges as a result of the formation of type-II band alignment in bilayer WS2. Both the interlayer and intralayer exciton energies are tunable by the twist angle of bilayer WS
2
. A high valley polarization of 82.2% is achieved in monolayer WS
2
at 13 K by coupling with n-type AlGaN, due to the faster exciton decay rate through electron-phonon interaction and the reduced intervalley scattering by doping-induced carrier screening. The valley polarization of interlayer exciton is higher than that of the intralayer exciton, due to the suppressed intervalley scattering resulting from the reduced electron-hole interaction. This work has presented a facile and efficient technique to modulate the excitonic properties of 2D materials. The reported high valley polarization in monolayer WS
2
and the discovery of interlayer exciton in bilayer WS
2
will trigger innovative study in valley exciton physics and facilitate emerging valleytronic applications. |
---|---|
AbstractList | The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS
2
through coupling to AlGaN with different doping levels. A notable redshift in exciton energy is observed by interfacing WS
2
with n-type AlGaN. More interestingly, an interlayer exciton peak emerges as a result of the formation of type-II band alignment in bilayer WS2. Both the interlayer and intralayer exciton energies are tunable by the twist angle of bilayer WS
2
. A high valley polarization of 82.2% is achieved in monolayer WS
2
at 13 K by coupling with n-type AlGaN, due to the faster exciton decay rate through electron-phonon interaction and the reduced intervalley scattering by doping-induced carrier screening. The valley polarization of interlayer exciton is higher than that of the intralayer exciton, due to the suppressed intervalley scattering resulting from the reduced electron-hole interaction. This work has presented a facile and efficient technique to modulate the excitonic properties of 2D materials. The reported high valley polarization in monolayer WS
2
and the discovery of interlayer exciton in bilayer WS
2
will trigger innovative study in valley exciton physics and facilitate emerging valleytronic applications. The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich valley-contrasting physics. Here, we demonstrate highly tunable exciton and valley characteristics in monolayer and bilayer WS2 through coupling to AlGaN with different doping levels. A notable redshift in exciton energy is observed by interfacing WS2 with n-type AlGaN. More interestingly, an interlayer exciton peak emerges as a result of the formation of type-II band alignment in bilayer WS2. Both the interlayer and intralayer exciton energies are tunable by the twist angle of bilayer WS2. A high valley polarization of 82.2% is achieved in monolayer WS2 at 13 K by coupling with n-type AlGaN, due to the faster exciton decay rate through electron-phonon interaction and the reduced intervalley scattering by doping-induced carrier screening. The valley polarization of interlayer exciton is higher than that of the intralayer exciton, due to the suppressed intervalley scattering resulting from the reduced electron-hole interaction. This work has presented a facile and efficient technique to modulate the excitonic properties of 2D materials. The reported high valley polarization in monolayer WS2 and the discovery of interlayer exciton in bilayer WS2 will trigger innovative study in valley exciton physics and facilitate emerging valleytronic applications. |
Author | Li, Linglong Kang, Wenyu Yang, Chengbiao Li, Xu Zeng, Xinlong Zhou, Xiaowen Xia, Yuanzheng Kang, Junyong Wu, Zhiming Wu, Yaping Liu, Haiyang |
Author_xml | – sequence: 1 givenname: Xinlong surname: Zeng fullname: Zeng, Xinlong organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 2 givenname: Wenyu surname: Kang fullname: Kang, Wenyu organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 3 givenname: Xiaowen surname: Zhou fullname: Zhou, Xiaowen organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 4 givenname: Linglong surname: Li fullname: Li, Linglong organization: School of Physics, Southeast University – sequence: 5 givenname: Yuanzheng surname: Xia fullname: Xia, Yuanzheng organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 6 givenname: Haiyang surname: Liu fullname: Liu, Haiyang organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 7 givenname: Chengbiao surname: Yang fullname: Yang, Chengbiao organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 8 givenname: Yaping surname: Wu fullname: Wu, Yaping email: ypwu@xmu.edu.cn organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 9 givenname: Zhiming surname: Wu fullname: Wu, Zhiming email: zmwu@xmu.edu.cn organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 10 givenname: Xu surname: Li fullname: Li, Xu email: xuliphys@xmu.edu.cn organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University – sequence: 11 givenname: Junyong surname: Kang fullname: Kang, Junyong organization: College of Physical Science and Technology, Key Laboratory of Semiconductors and Applications of Fujian Province, College of Chemistry and Chemical Engineering, Jiujiang Research Institute, Xiamen University |
BookMark | eNp9kEFPwyAUx4mZiXPuA3hr4rnKo6Wlx2XRaTL1oMabBIFuXSpMoLp9e2lqYmKiJ3jw__F4v2M0MtZohE4BnwPG5YXPMcuzFBOSEshYujtAYwJVleYUwyjucUVTRkhxhKbebzDGUFCAio3Ry61VXStCY1ZJWOukMcGJVuy1S4RRfandUH6IttX7RO9kE6zx8Sp5fiARcrZbrYekkKGxJvlswjqZtQtxd4IOa9F6Pf1eJ-jp6vJxfp0u7xc389kylRmtQpphUDXkkgpRipq-Yky1zGtVaqoYxYWkMUaZovGcsDyvK2CUKikyBRS0yibobHh36-x7p33gG9s5E1tyUhZAixIYjikYUtJZ752u-dY1b8LtOWDem-SDSR5N8t4k30Wm_MXE-UU_ZhTVtP-SZCB97GJW2v386W_oC2yhirU |
CitedBy_id | crossref_primary_10_1021_acsaelm_3c01450 crossref_primary_10_1021_acsnano_2c07469 |
Cites_doi | 10.1038/srep09218 10.1039/C5NR08395H 10.1103/PhysRevB.84.155413 10.1038/srep18885 10.1039/C7TA06088B 10.1002/adom.201500301 10.1088/1361-648X/ab3fec 10.1021/nl3026357 10.1038/ncomms7242 10.1021/acs.nanolett.6b04171 10.1038/nnano.2012.95 10.1002/smll.201805503 10.1039/C5NR00383K 10.1021/acsami.1c06622 10.1021/acsami.9b04791 10.1021/acsnano.1c06955 10.1103/PhysRevB.100.041402 10.1088/0256-307X/38/1/017301 10.1002/adma.201703888 10.1007/s12274-019-2516-3 10.1038/nnano.2012.96 10.1103/PhysRevB.36.6712 10.1038/nnano.2016.49 10.1007/s12274-019-2497-2 10.1063/1.4966218 10.1021/nl500171v 10.1557/PROC-482-863 10.1021/acsnano.9b08004 10.1103/PhysRevB.88.121301 10.1021/acsaelm.0c00277 10.1021/acs.chemmater.0c03413 10.1038/ncomms1882 10.1126/science.aaw4194 10.1021/acsnano.5b03188 10.1073/pnas.1406960111 10.1088/1361-6633/abdb98 10.1021/acsanm.1c00192 10.1016/j.mseb.2020.114756 10.1016/j.optmat.2019.05.047 10.1038/natrevmats.2016.55 10.1038/nature13734 10.1021/acsanm.9b02170 10.1038/s41566-018-0204-6 10.1021/acs.nanolett.7b03667 10.1038/nnano.2014.176 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40843-022-2138-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | 利用AlGaN耦合作用调控WS2层内和层间谷激子 |
EISSN | 2199-4501 |
EndPage | 210 |
ExternalDocumentID | 10_1007_s40843_022_2138_x |
GroupedDBID | -EM -SB -S~ 0R~ 4.4 406 5VR AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAXDM AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFQWF AFUIB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BAPOH BGNMA CAJEB CCEZO CDRFL CJPJV DNIVK DPUIP EBLON EBS EIOEI EJD FA0 FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HVGLF IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 Q-- RIG RLLFE ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG U1G U5L UG4 UOJIU UTJUX UZXMN VFIZW Z7V Z7X ZMTXR AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c359t-301df14c5aa7af5b005ec4fd7e5d8506c535958d505e2844f91855dca3d151ed3 |
IEDL.DBID | AGYKE |
ISSN | 2095-8226 |
IngestDate | Wed Aug 13 09:24:15 EDT 2025 Tue Jul 01 01:00:56 EDT 2025 Thu Apr 24 23:14:04 EDT 2025 Fri Feb 21 02:46:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | interlayer exciton valley polarization WS intralayer exciton AlGaN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-301df14c5aa7af5b005ec4fd7e5d8506c535958d505e2844f91855dca3d151ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s40843-022-2138-x.pdf |
PQID | 2761567180 |
PQPubID | 2044436 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2761567180 crossref_primary_10_1007_s40843_022_2138_x crossref_citationtrail_10_1007_s40843_022_2138_x springer_journals_10_1007_s40843_022_2138_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China materials |
PublicationTitleAbbrev | Sci. China Mater |
PublicationYear | 2023 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Zhang, Gogna, Burg (CR33) 2019; 100 Nayak, Lin, Yeh (CR21) 2016; 8 Zhao, Li, Dong (CR3) 2021; 84 Ye, Xiao, Wang (CR13) 2016; 11 Kumar, Singh, Kumar (CR34) 2019; 31 Wang, Reeber (CR35) 2011; 482 Li, Li, Tian (CR5) 2020; 2 Plechinger, Nagler, Arora (CR15) 2016; 16 Jin, Lei, Wu (CR40) 2017; 5 Molina-Sánchez, Wirtz (CR23) 2011; 84 Jauregui, Joe, Pistunova (CR42) 2019; 366 Ye, Cao, O’Brien (CR9) 2014; 513 Di, Wang, Wei (CR20) 2020; 261 Hanbicki, Kioseoglou, Currie (CR31) 2016; 6 Zhu, Zeng, Dai (CR11) 2014; 111 Tränkle, Lach, Forchel (CR25) 1987; 36 Rivera, Schaibley, Jones (CR41) 2015; 6 Yuan, Huang (CR7) 2015; 7 Liu, Gao, Zhang (CR6) 2019; 12 Ji, Solís-Fernández, Erkılıç (CR10) 2021; 4 Jiang, Liu, Huang (CR16) 2014; 9 Cao, Wang, Han (CR39) 2012; 3 Chen, Shao, Yang (CR18) 2019; 11 Wan, Xiao, Li (CR43) 2018; 30 Chen, Li, Qi (CR4) 2021; 15 Wang, Chiu, Honz (CR45) 2018; 18 Liang, Zhang, Li (CR19) 2019; 12 Shao, Xue, Liu (CR28) 2020; 32 Mak, Xiao, Shan (CR1) 2018; 12 Schaibley, Yu, Clark (CR2) 2016; 1 Zhu, Chen, Cui (CR8) 2015; 5 Liu, Zheng, Liu (CR12) 2021; 13 Liu, Hu, Wang (CR32) 2019; 13 He, Li, Zhu (CR37) 2016; 109 Gutiérrez, Perea-López, Elías (CR24) 2013; 13 Zhang, Zhang, Zhang (CR27) 2019; 94 Zhu, Wang, Liu (CR38) 2013; 88 H, Mondal, Bid (CR44) 2020; 3 Zeng, Dai, Yao (CR29) 2012; 7 Mak, He, Shan (CR30) 2012; 7 Zheng, Sun, Zhou (CR17) 2015; 3 Feng, Cong, Konabe (CR14) 2019; 15 Jo, Ubrig, Berger (CR22) 2014; 14 Chen, Wan, Wen (CR26) 2015; 9 Qin, Zhu, Ye (CR36) 2021; 38 X Di (2138_CR20) 2020; 261 G Shao (2138_CR28) 2020; 32 AT Hanbicki (2138_CR31) 2016; 6 Z Wang (2138_CR45) 2018; 18 S Zhao (2138_CR3) 2021; 84 S Zheng (2138_CR17) 2015; 3 S Jo (2138_CR22) 2014; 14 H Zeng (2138_CR29) 2012; 7 Z Ye (2138_CR9) 2014; 513 Y Liu (2138_CR6) 2019; 12 T Jiang (2138_CR16) 2014; 9 L Yuan (2138_CR7) 2015; 7 L Zhang (2138_CR33) 2019; 100 K Wang (2138_CR35) 2011; 482 HG Ji (2138_CR10) 2021; 4 X Jin (2138_CR40) 2017; 5 B Zhu (2138_CR8) 2015; 5 K Chen (2138_CR26) 2015; 9 P Rivera (2138_CR41) 2015; 6 PG Chen (2138_CR4) 2021; 15 PK Nayak (2138_CR21) 2016; 8 A Molina-Sánchez (2138_CR23) 2011; 84 G Tränkle (2138_CR25) 1987; 36 J Liang (2138_CR19) 2019; 12 Y Liu (2138_CR32) 2019; 13 T Cao (2138_CR39) 2012; 3 R Li (2138_CR5) 2020; 2 JR Schaibley (2138_CR2) 2016; 1 J Chen (2138_CR18) 2019; 11 HR Gutiérrez (2138_CR24) 2013; 13 X Zhang (2138_CR27) 2019; 94 X He (2138_CR37) 2016; 109 B Zhu (2138_CR11) 2014; 111 CR Zhu (2138_CR38) 2013; 88 KF Mak (2138_CR1) 2018; 12 S Feng (2138_CR14) 2019; 15 Y Ye (2138_CR13) 2016; 11 KF Mak (2138_CR30) 2012; 7 D Kumar (2138_CR34) 2019; 31 G Liu (2138_CR12) 2021; 13 MS Qin (2138_CR36) 2021; 38 LA Jauregui (2138_CR42) 2019; 366 Y Wan (2138_CR43) 2018; 30 L P H (2138_CR44) 2020; 3 G Plechinger (2138_CR15) 2016; 16 |
References_xml | – volume: 11 start-page: 19381 year: 2019 end-page: 19387 ident: CR18 article-title: Synthesis of wafer-scale monolayer WS crystals toward the application in integrated electronic devices publication-title: ACS Appl Mater Interfaces – volume: 16 start-page: 7899 year: 2016 end-page: 7904 ident: CR15 article-title: Excitonic valley effects in monolayer WS under high magnetic fields publication-title: Nano Lett – volume: 100 start-page: 041402 year: 2019 ident: CR33 article-title: Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure publication-title: Phys Rev B – volume: 109 start-page: 173105 year: 2016 ident: CR37 article-title: Strain engineering in monolayer WS , MoS , and the WS /MoS heterostructure publication-title: Appl Phys Lett – volume: 4 start-page: 3717 year: 2021 end-page: 3724 ident: CR10 article-title: Stacking orientation-dependent photoluminescence pathways in artificially stacked bilayer WS nanosheets grown by chemical vapor deposition: Implications for spintronics and valleytronics publication-title: ACS Appl Nano Mater – volume: 13 start-page: 35097 year: 2021 end-page: 35104 ident: CR12 article-title: Enhancement of room-temperature photoluminescence and valley polarization of monolayer and bilayer WS chiral plasmonic coupling publication-title: ACS Appl Mater Interfaces – volume: 30 start-page: 1703888 year: 2018 ident: CR43 article-title: Epitaxial single-layer MoS on GaN with enhanced valley helicity publication-title: Adv Mater – volume: 94 start-page: 213 year: 2019 end-page: 216 ident: CR27 article-title: Tunable photoluminescence of bilayer MoS interlayer twist publication-title: Optical Mater – volume: 482 start-page: 863 year: 2011 end-page: 868 ident: CR35 article-title: Thermal expansion of GaN and AIN publication-title: MRS Proc – volume: 15 start-page: 1805503 year: 2019 ident: CR14 article-title: Engineering valley polarization of monolayer WS : A physical doping approach publication-title: Small – volume: 31 start-page: 505403 year: 2019 ident: CR34 article-title: Thermal expansion coefficient and phonon dynamics in coexisting allotropes of monolayer WS probed by Raman scattering publication-title: J Phys-Condens Matter – volume: 7 start-page: 7402 year: 2015 end-page: 7408 ident: CR7 article-title: Exciton dynamics and annihilation in WS 2D semiconductors publication-title: Nanoscale – volume: 5 start-page: 9218 year: 2015 ident: CR8 article-title: Exciton binding energy of monolayer WS publication-title: Sci Rep – volume: 3 start-page: 641 year: 2020 end-page: 647 ident: CR44 article-title: Electrical and chemical tuning of exciton lifetime in monolayer MoS for field-effect transistors publication-title: ACS Appl Nano Mater – volume: 261 start-page: 114756 year: 2020 ident: CR20 article-title: Controlled synthesis of WS with different layers by tuning flow rates publication-title: Mater Sci Eng-B – volume: 84 start-page: 026401 year: 2021 ident: CR3 article-title: Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges publication-title: Rep Prog Phys – volume: 88 start-page: 121301 year: 2013 ident: CR38 article-title: Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS publication-title: Phys Rev B – volume: 1 start-page: 16055 year: 2016 ident: CR2 article-title: Valleytronics in 2D materials publication-title: Nat Rev Mater – volume: 36 start-page: 6712 year: 1987 end-page: 6714 ident: CR25 article-title: General relation between band-gap renormalization and carrier density in two-dimensional electron-hole plasmas publication-title: Phys Rev B – volume: 7 start-page: 490 year: 2012 end-page: 493 ident: CR29 article-title: Valley polarization in MoS monolayers by optical pumping publication-title: Nat Nanotech – volume: 2 start-page: 1981 year: 2020 end-page: 1988 ident: CR5 article-title: Valley polarization in superacid-treated monolayer MoS publication-title: ACS Appl Electron Mater – volume: 38 start-page: 017301 year: 2021 ident: CR36 article-title: Strain tunable berry curvature dipole, orbital magnetization and nonlinear hall effect in WSe monolayer publication-title: Chin Phys Lett – volume: 15 start-page: 18163 year: 2021 end-page: 18171 ident: CR4 article-title: Long-range directional routing and spatial selection of high-spin-purity valley Trion emission in monolayer WS publication-title: ACS Nano – volume: 12 start-page: 2802 year: 2019 end-page: 2807 ident: CR19 article-title: Carbon-nanoparticle-assisted growth of high quality bilayer WS by atmospheric pressure chemical vapor deposition publication-title: Nano Res – volume: 13 start-page: 14416 year: 2019 end-page: 14425 ident: CR32 article-title: Reduced binding energy and layer-dependent exciton dynamics in monolayer and multilayer WS publication-title: ACS Nano – volume: 6 start-page: 6242 year: 2015 ident: CR41 article-title: Observation of long-lived interlayer excitons in monolayer MoSe -WSe heterostructures publication-title: Nat Commun – volume: 9 start-page: 9868 year: 2015 end-page: 9876 ident: CR26 article-title: Electronic properties of MoS -WS heterostructures synthesized with two-step lateral epitaxial strategy publication-title: ACS Nano – volume: 12 start-page: 451 year: 2018 end-page: 460 ident: CR1 article-title: Light-valley interactions in 2D semiconductors publication-title: Nat Photon – volume: 9 start-page: 825 year: 2014 end-page: 829 ident: CR16 article-title: Valley and band structure engineering of folded MoS bilayers publication-title: Nat Nanotech – volume: 32 start-page: 9721 year: 2020 end-page: 9729 ident: CR28 article-title: Twist angle-dependent optical responses in controllably grown WS vertical homojunctions publication-title: Chem Mater – volume: 7 start-page: 494 year: 2012 end-page: 498 ident: CR30 article-title: Control of valley polarization in monolayer MoS by optical helicity publication-title: Nat Nanotech – volume: 3 start-page: 887 year: 2012 ident: CR39 article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide publication-title: Nat Commun – volume: 18 start-page: 137 year: 2018 end-page: 143 ident: CR45 article-title: Electrical tuning of interlayer exciton gases in WSe bilayers publication-title: Nano Lett – volume: 12 start-page: 2695 year: 2019 end-page: 2711 ident: CR6 article-title: Valleytronics in transition metal dichalcogenides materials publication-title: Nano Res – volume: 13 start-page: 3447 year: 2013 end-page: 3454 ident: CR24 article-title: Extraordinary room-temperature photoluminescence in triangular WS monolayers publication-title: Nano Lett – volume: 11 start-page: 598 year: 2016 end-page: 602 ident: CR13 article-title: Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide publication-title: Nat Nanotech – volume: 84 start-page: 155413 year: 2011 ident: CR23 article-title: Phonons in single-layer and few-layer MoS and WS publication-title: Phys Rev B – volume: 14 start-page: 2019 year: 2014 end-page: 2025 ident: CR22 article-title: Mono- and bilayer WS light-emitting transistors publication-title: Nano Lett – volume: 111 start-page: 11606 year: 2014 end-page: 11611 ident: CR11 article-title: Anomalously robust valley polarization and valley coherence in bilayer WS publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 6035 year: 2016 end-page: 6042 ident: CR21 article-title: Robust room temperature valley polarization in monolayer and bilayer WS publication-title: Nanoscale – volume: 3 start-page: 1600 year: 2015 end-page: 1605 ident: CR17 article-title: Coupling and interlayer exciton in twist-stacked WS bilayers publication-title: Adv Opt Mater – volume: 6 start-page: 18885 year: 2016 ident: CR31 article-title: Anomalous temperature-dependent spin-valley polarization in monolayer WS publication-title: Sci Rep – volume: 513 start-page: 214 year: 2014 end-page: 218 ident: CR9 article-title: Probing excitonic dark states in single-layer tungsten disulphide publication-title: Nature – volume: 5 start-page: 19884 year: 2017 end-page: 19891 ident: CR40 article-title: Cu GeS : A new hole transporting material for stable and efficient perovskite solar cells publication-title: J Mater Chem A – volume: 366 start-page: 870 year: 2019 end-page: 875 ident: CR42 article-title: Electrical control of interlayer exciton dynamics in atomically thin heterostructures publication-title: Science – volume: 5 start-page: 9218 year: 2015 ident: 2138_CR8 publication-title: Sci Rep doi: 10.1038/srep09218 – volume: 8 start-page: 6035 year: 2016 ident: 2138_CR21 publication-title: Nanoscale doi: 10.1039/C5NR08395H – volume: 84 start-page: 155413 year: 2011 ident: 2138_CR23 publication-title: Phys Rev B doi: 10.1103/PhysRevB.84.155413 – volume: 6 start-page: 18885 year: 2016 ident: 2138_CR31 publication-title: Sci Rep doi: 10.1038/srep18885 – volume: 5 start-page: 19884 year: 2017 ident: 2138_CR40 publication-title: J Mater Chem A doi: 10.1039/C7TA06088B – volume: 3 start-page: 1600 year: 2015 ident: 2138_CR17 publication-title: Adv Opt Mater doi: 10.1002/adom.201500301 – volume: 31 start-page: 505403 year: 2019 ident: 2138_CR34 publication-title: J Phys-Condens Matter doi: 10.1088/1361-648X/ab3fec – volume: 13 start-page: 3447 year: 2013 ident: 2138_CR24 publication-title: Nano Lett doi: 10.1021/nl3026357 – volume: 6 start-page: 6242 year: 2015 ident: 2138_CR41 publication-title: Nat Commun doi: 10.1038/ncomms7242 – volume: 16 start-page: 7899 year: 2016 ident: 2138_CR15 publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b04171 – volume: 7 start-page: 490 year: 2012 ident: 2138_CR29 publication-title: Nat Nanotech doi: 10.1038/nnano.2012.95 – volume: 15 start-page: 1805503 year: 2019 ident: 2138_CR14 publication-title: Small doi: 10.1002/smll.201805503 – volume: 7 start-page: 7402 year: 2015 ident: 2138_CR7 publication-title: Nanoscale doi: 10.1039/C5NR00383K – volume: 13 start-page: 35097 year: 2021 ident: 2138_CR12 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c06622 – volume: 11 start-page: 19381 year: 2019 ident: 2138_CR18 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b04791 – volume: 15 start-page: 18163 year: 2021 ident: 2138_CR4 publication-title: ACS Nano doi: 10.1021/acsnano.1c06955 – volume: 100 start-page: 041402 year: 2019 ident: 2138_CR33 publication-title: Phys Rev B doi: 10.1103/PhysRevB.100.041402 – volume: 38 start-page: 017301 year: 2021 ident: 2138_CR36 publication-title: Chin Phys Lett doi: 10.1088/0256-307X/38/1/017301 – volume: 30 start-page: 1703888 year: 2018 ident: 2138_CR43 publication-title: Adv Mater doi: 10.1002/adma.201703888 – volume: 12 start-page: 2802 year: 2019 ident: 2138_CR19 publication-title: Nano Res doi: 10.1007/s12274-019-2516-3 – volume: 7 start-page: 494 year: 2012 ident: 2138_CR30 publication-title: Nat Nanotech doi: 10.1038/nnano.2012.96 – volume: 36 start-page: 6712 year: 1987 ident: 2138_CR25 publication-title: Phys Rev B doi: 10.1103/PhysRevB.36.6712 – volume: 11 start-page: 598 year: 2016 ident: 2138_CR13 publication-title: Nat Nanotech doi: 10.1038/nnano.2016.49 – volume: 12 start-page: 2695 year: 2019 ident: 2138_CR6 publication-title: Nano Res doi: 10.1007/s12274-019-2497-2 – volume: 109 start-page: 173105 year: 2016 ident: 2138_CR37 publication-title: Appl Phys Lett doi: 10.1063/1.4966218 – volume: 14 start-page: 2019 year: 2014 ident: 2138_CR22 publication-title: Nano Lett doi: 10.1021/nl500171v – volume: 482 start-page: 863 year: 2011 ident: 2138_CR35 publication-title: MRS Proc doi: 10.1557/PROC-482-863 – volume: 13 start-page: 14416 year: 2019 ident: 2138_CR32 publication-title: ACS Nano doi: 10.1021/acsnano.9b08004 – volume: 88 start-page: 121301 year: 2013 ident: 2138_CR38 publication-title: Phys Rev B doi: 10.1103/PhysRevB.88.121301 – volume: 2 start-page: 1981 year: 2020 ident: 2138_CR5 publication-title: ACS Appl Electron Mater doi: 10.1021/acsaelm.0c00277 – volume: 32 start-page: 9721 year: 2020 ident: 2138_CR28 publication-title: Chem Mater doi: 10.1021/acs.chemmater.0c03413 – volume: 3 start-page: 887 year: 2012 ident: 2138_CR39 publication-title: Nat Commun doi: 10.1038/ncomms1882 – volume: 366 start-page: 870 year: 2019 ident: 2138_CR42 publication-title: Science doi: 10.1126/science.aaw4194 – volume: 9 start-page: 9868 year: 2015 ident: 2138_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.5b03188 – volume: 111 start-page: 11606 year: 2014 ident: 2138_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1406960111 – volume: 84 start-page: 026401 year: 2021 ident: 2138_CR3 publication-title: Rep Prog Phys doi: 10.1088/1361-6633/abdb98 – volume: 4 start-page: 3717 year: 2021 ident: 2138_CR10 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.1c00192 – volume: 261 start-page: 114756 year: 2020 ident: 2138_CR20 publication-title: Mater Sci Eng-B doi: 10.1016/j.mseb.2020.114756 – volume: 94 start-page: 213 year: 2019 ident: 2138_CR27 publication-title: Optical Mater doi: 10.1016/j.optmat.2019.05.047 – volume: 1 start-page: 16055 year: 2016 ident: 2138_CR2 publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2016.55 – volume: 513 start-page: 214 year: 2014 ident: 2138_CR9 publication-title: Nature doi: 10.1038/nature13734 – volume: 3 start-page: 641 year: 2020 ident: 2138_CR44 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.9b02170 – volume: 12 start-page: 451 year: 2018 ident: 2138_CR1 publication-title: Nat Photon doi: 10.1038/s41566-018-0204-6 – volume: 18 start-page: 137 year: 2018 ident: 2138_CR45 publication-title: Nano Lett doi: 10.1021/acs.nanolett.7b03667 – volume: 9 start-page: 825 year: 2014 ident: 2138_CR16 publication-title: Nat Nanotech doi: 10.1038/nnano.2014.176 |
SSID | ssj0001651198 |
Score | 2.228084 |
Snippet | The fine-tuning of exciton transition and valley polarization process in two-dimensional materials have drawn tremendous research interest due to their rich... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 202 |
SubjectTerms | Bilayers Chemistry and Materials Science Chemistry/Food Science Coupling Decay rate Doping Electron phonon interactions Electron-hole interaction Excitons Interlayers Materials Science Monolayers Polarization Red shift Scattering Two dimensional materials Valleys |
Title | Modulating the intralayer and interlayer valley excitons in WS2 through interaction with AlGaN |
URI | https://link.springer.com/article/10.1007/s40843-022-2138-x https://www.proquest.com/docview/2761567180 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YuOjBtxFF04MnTcmybXfhSIxANHARIl7clLZrjGQxshj01zvdByBRE45Nu81up535dqYzH8AF0wb_AuoGJaA8ysOQUdSBkrqacVHDXznP2EThTtdr9_ntQAyyPO5Jfts9D0kmmnqe7MadGrcxR5e6VTylCByLCD8cUYBio_V4t-Ra8WxwLOGiQwBB0QR6eTzzt3l-WqQFzFyJjCYGp7kDvfxV03smr5VpPKyor5Uqjmt-yy5sZwCUNNIdswcbJtqHraWyhAfw1BnrhNUreiaID8lL4gCWCM6JjLRtWiegbX5YJpZPYmYKFUM0wS7ycO-SjPwnHZlmThDr8CWNUUt2D6HfvOldt2nGw0AVE_WYog7QYZUrIaUvQ2EPrlE81L4R2ha8U8Jm99Y0gimD1o6HdQQBQivJNOIJo9kRFKJxZI6BcISLjBuX-b60tf-GDsIhLVjoI1LxhtUSOLksApUVKbdcGaNgXl45WboAly6wSxfMSnA5f-QtrdDx3-ByLuAgO6yTwPUR1nlopJ0SXOXyWnT_OdnJWqNPYdNS1afumzIU4vepOUNAEw_Psw38DSVt61o |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LMwNBEO5CDjh4KyGYAxdqVTKP3eTgkPJIiOSCwsWazMwqJbWUBOHv-Ct-mJ59JChUOahy3JrZqd3pnu6vu6e7AVaYNmgFlAxSQLkODwLmoAyUDtWMiyKacq6xicL1hls95vun4nQAXtJcmOi2exqSjCR1L9mN54vcxhypQwt4SrvJTcqaeXpEO629ubeNRF2ldHfnaKvqJK0EHMVEqeMgG-ugwJWQ0pOBsLxnFA-0Z4S2NduUsAmqRY14wKDA5kEJ9ZjQSjKNKtFohusOQoajyY8WXqZcOau9c-W4NhgX9b5DwOKgynXT-OlX3_1RA_Zh7adIbKTgdsfhNd2a-F7L9cZ9p7mhnj9VjfznezcBYwnAJuX4REzCgAmnYPRd2cVpOK_f6KhrWXhJEP-Sq8jBLdH4IDLU9tE6Oe3jg-0080RMV6HgC9s4RE4OKUmaG8Uz48wQYh3apNyqyMYMHP_JD87CUHgTmjkgHOEw44Yyz5O2tmEzj3BPCxZ4iMTcZiEL-ZT2vkqKsNteIC2_Vz46IpWPpPItqfxuFtZ6r9zGFUh-mpxLGcpPhFHbpx7CVhdBSD4L6yl_9Ie_XWz-V7OXYbh6VD_wD_YatQUYoQgGY1dVDoY6d_dmEcFbp7mUHB4CF3_Nc2_OmUg8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LLwRBEK6wEuHgLdazD1zI2N1-zOweHDZYj2UjQXAxert7RMgQO1j-lL_iJ6mex3oEiYODY6d7Oj1d1VVfV3VVAcwzbfAWUDFIAeU6PAiYgzJQOlQzLsp4lXONDRTebbibh3z7WBx3wXMWCxO_ds9ckklMg83SFEaFGx0UOoFvvFjm1v9IHVrCE9tOX1XWzeMD3tlaK1trSOAFSmvrB6ubTlpWwFFMVCIHWVoHJa6ElJ4MhOVDo3igPSO0zd-mhA1WLWvEBgaFNw8qqNOEVpJpVI9GM5y3G3pwCV45Bz3VjZP6O7OOax1zcR08BC8Oql8386V-te6P2vAN4n7yysbKrjYIL9k2JW9cLpfvouayevqUQfIf7eMQDKTAm1STkzIMXSYcgf536RhH4XT3WsfVzMJzgriYXMSGb4mXEiJDbZvW-Gmb97YCzSMxbYUCMWxhFznapyQtepSMTCJGiDV0k-rVhmyMweGf_OA45MLr0EwA4QiTGTeUeZ60OQ-bRYSBWrDAQ4TmNkt5KGZ84Ks0ObutEXLld9JKx6TykVS-JZXfzsNi55ObJDPJT4OnM-byUyHV8qmHcNZFcFLMw1LGK2_d3042-avRc9C7t1bzd7Ya9Snoo4gREwvWNOSi2zszg5guas6m54jA2V-z3CtdxlEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+intralayer+and+interlayer+valley+excitons+in+WS2+through+interaction+with+AlGaN&rft.jtitle=Science+China+materials&rft.au=Zeng%2C+Xinlong&rft.au=Kang%2C+Wenyu&rft.au=Zhou%2C+Xiaowen&rft.au=Li%2C+Linglong&rft.date=2023-01-01&rft.pub=Science+China+Press&rft.issn=2095-8226&rft.eissn=2199-4501&rft.volume=66&rft.issue=1&rft.spage=202&rft.epage=210&rft_id=info:doi/10.1007%2Fs40843-022-2138-x&rft.externalDocID=10_1007_s40843_022_2138_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8226&client=summon |