Early warning signals of abrupt temperature change in different regions of China over the past 50 years

In this paper, the early warning signals of abrupt temperature change in different regions of China are investigated. Seven regions are divided on the basis of different climate temperature patterns, obtained through the rotated empirical orthogonal function, and the signal-to-noise temperature rati...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 4; pp. 723 - 731
Main Author 仝纪龙 吴浩 侯威 何文平 周杰
Format Journal Article
LanguageEnglish
Published 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the early warning signals of abrupt temperature change in different regions of China are investigated. Seven regions are divided on the basis of different climate temperature patterns, obtained through the rotated empirical orthogonal function, and the signal-to-noise temperature ratios for each region are then calculated. Based on the concept of critical slowing down, the temperature data that contain noise in the different regions of China are preprocessed to study the early warning signals of abrupt climate change. First, the Mann-Kendall method is used to identify the instant of abrupt climate change in the temperature data. Second, autocorrelation coefficients that can identify critical slowing down are calculated. The results show that the critical slowing down phenomenon appeared in temperature data about 5-10 years before abrupt climate change occurred, which indicates that the critical slowing down phenomenon is a possible early warning signal for abrupt climate change, and that noise has less influence on the detection results of the early warning signals. Accordingly, this demonstrates that the model is reliable in identifying the early warning signals of abrupt climate change based on detecting the critical slowing down phenomenon, which provides an experimental basis for the actual application of the method.
Bibliography:In this paper, the early warning signals of abrupt temperature change in different regions of China are investigated. Seven regions are divided on the basis of different climate temperature patterns, obtained through the rotated empirical orthogonal function, and the signal-to-noise temperature ratios for each region are then calculated. Based on the concept of critical slowing down, the temperature data that contain noise in the different regions of China are preprocessed to study the early warning signals of abrupt climate change. First, the Mann-Kendall method is used to identify the instant of abrupt climate change in the temperature data. Second, autocorrelation coefficients that can identify critical slowing down are calculated. The results show that the critical slowing down phenomenon appeared in temperature data about 5-10 years before abrupt climate change occurred, which indicates that the critical slowing down phenomenon is a possible early warning signal for abrupt climate change, and that noise has less influence on the detection results of the early warning signals. Accordingly, this demonstrates that the model is reliable in identifying the early warning signals of abrupt climate change based on detecting the critical slowing down phenomenon, which provides an experimental basis for the actual application of the method.
11-5639/O4
abrupt climate change, critical slowing down, rotated empirical orthogonal function, early warning signal
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/4/049201