An In vitro System to Gauge the Thrombolytic Efficacy of Histotripsy and a Lytic Drug

Deep vein thrombosis (DVT) is a global health concern. The primary approach to achieve vessel recanalization for critical obstructions is catheter-directed thrombolytics (CDT). To mitigate caustic side effects and the long treatment time associated with CDT, adjuvant and alternative approaches are u...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualized experiments no. 172
Main Authors Bhargava, Aarushi, Hendley, Samuel A., Bader, Kenneth B.
Format Journal Article
LanguageEnglish
Published 04.06.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep vein thrombosis (DVT) is a global health concern. The primary approach to achieve vessel recanalization for critical obstructions is catheter-directed thrombolytics (CDT). To mitigate caustic side effects and the long treatment time associated with CDT, adjuvant and alternative approaches are under development. One such approach is histotripsy, a focused ultrasound therapy to ablate tissue via bubble cloud nucleation. Pre-clinical studies have demonstrated strong synergy between histotripsy and thrombolytics for clot degradation. This report outlines a benchtop method to assess the efficacy of histotripsy-aided thrombolytic therapy, or lysotripsy. Clots manufactured from fresh human venous blood were introduced into a flow channel whose dimensions and acousto-mechanical properties mimic an iliofemoral vein. The channel was perfused with plasma and the lytic recombinant tissue-type plasminogen activator. Bubble clouds were generated in the clot with a focused ultrasound source designed for the treatment of femoral venous clots. Motorized positioners were used to translate the source focus along the clot length. At each insonation location, acoustic emissions from the bubble cloud were passively recorded, and beamformed to generate passive cavitation images. Metrics to gauge treatment efficacy included clot mass loss (overall treatment efficacy), and the concentrations of D-dimer (fibrinolysis) and hemoglobin (hemolysis) in the perfusate. There are limitations to this in vitro design, including lack of means to assess in vivo side effects or dynamic changes in flow rate as the clot lyses. Overall, the setup provides an effective method to assess the efficacy of histotripsy-based strategies to treat DVT.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1940-087X
1940-087X
DOI:10.3791/62133