Continuous Authentication Using One-Dimensional Multi-Resolution Local Binary Patterns (1DMRLBP) in ECG Biometrics
The objective of a continuous authentication system is to continuously monitor the identity of subjects using biometric systems. In this paper, we proposed a novel feature extraction and a unique continuous authentication strategy and technique. We proposed One-Dimensional Multi-Resolution Local Bin...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 11; no. 12; pp. 2818 - 2832 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective of a continuous authentication system is to continuously monitor the identity of subjects using biometric systems. In this paper, we proposed a novel feature extraction and a unique continuous authentication strategy and technique. We proposed One-Dimensional Multi-Resolution Local Binary Patterns (1DMRLBP), an online feature extraction for one-dimensional signals. We also proposed a continuous authentication system, which uses sequential sampling and 1DMRLBP feature extraction. This system adaptively updates decision thresholds and sample size during run-time. Unlike most other local binary patterns variants, 1DMRLBP accounts for observations' temporal changes and has a mechanism to extract one feature vector that represents multiple observations. 1DMRLBP also accounts for quantization error, tolerates noise, and extracts local and global signal morphology. This paper examined electrocardiogram signals. When 1DMRLBP was applied on the University of Toronto database (UofTDB) 1,012 single session subjects database, an equal error rate (EER) of 7.89% was achieved in comparison to 12.30% from a state-of-the-art work. Also, an EER of 10.10% was resulted when 1DMRLBP was applied to UofTDB 82 multiple sessions database. Experiments showed that using 1DMRLBP improved EER by 15% when compared with a biometric system based on raw time-samples. Finally, when 1DMRLBP was implemented with sequential sampling to achieve a continuous authentication system, 0.39% false rejection rate and 1.57% false acceptance rate were achieved. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1556-6013 1556-6021 |
DOI: | 10.1109/TIFS.2016.2599270 |