Undercut and overhang angle control in topology optimization: A density gradient based integral approach

Summary We present an approach for controlling the undercut and the minimal overhang angle in density based topology optimization, which are useful for reducing support structures in additive manufacturing. We cast both the undercut control and the minimal overhang angle control that are inherently...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 111; no. 3; pp. 247 - 272
Main Author Qian, Xiaoping
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 20.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary We present an approach for controlling the undercut and the minimal overhang angle in density based topology optimization, which are useful for reducing support structures in additive manufacturing. We cast both the undercut control and the minimal overhang angle control that are inherently constraints on the boundary shape into a domain integral of Heaviside projected density gradient. Such a Heaviside projection based integral of density gradient leads to a single constraint for controlling the undercut or controlling the overhang angle in the optimization. It effectively corresponds to a constraint on the projected perimeter that has undercut or has slope smaller than the prescribed overhang angle. In order to prevent trivial solutions of intermediate density to satisfy the density gradient constraints, a constraint on density grayness is also incorporated into the formulations. Numerical results on Messerschmitt–Bolkow–Blohm beams, cantilever beams, and 2D and 3D heat conduction problems demonstrate the proposed formulations are effective in controlling the undercut and the minimal overhang angle in the optimized designs. Copyright © 2016 John Wiley & Sons, Ltd.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.5461