Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro

The marine bacterium Vibrio harveyi is a potential indicator organism for evaluating marine environmental pollution. The DnaK-DnaJ-GrpE chaperone machinery of V. harveyi has been studied as a model of response to stress conditions and compared to the Escherichia coli DnaK system. The genes encoding...

Full description

Saved in:
Bibliographic Details
Published inArchives of microbiology Vol. 182; no. 6; pp. 436 - 449
Main Authors Zmijewski, Michał A, Kwiatkowska, Joanna M, Lipińska, Barbara
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.12.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The marine bacterium Vibrio harveyi is a potential indicator organism for evaluating marine environmental pollution. The DnaK-DnaJ-GrpE chaperone machinery of V. harveyi has been studied as a model of response to stress conditions and compared to the Escherichia coli DnaK system. The genes encoding DnaK, DnaJ and GrpE of V. harveyi were cloned into expression vectors and grpE was sequenced. It was found that V. harveyi possesses a unique organization of the hsp gene cluster (grpE-gltP-dnaK-dnaJ), which is present exclusively in marine Vibrio species. In vivo experiments showed that suppression of the E. coli dnaK mutation by V. harveyi DnaK protein was weak or absent, while suppression of the dnaJ and grpE mutations by V. harveyi DnaJ and GrpE proteins was efficient. These results suggest higher species-specificity of the DnaK chaperone than the GrpE and DnaJ cochaperones. Proteins of the DnaK chaperone machinery of V. harveyi were purified to homogeneity and their efficient cooperation with the E. coli chaperones in the luciferase refolding reaction and in stimulation of DnaK ATPase activity was demonstrated. Compared to the E. coli system, the purified DnaK-DnaJ-GrpE system of V. harveyi exhibited about 20% lower chaperoning activity in the luciferase reactivation assay. ATPase activity of V. harveyi DnaK protein was at least twofold higher than that of the E. coli model DnaK but its stimulation by the cochaperones DnaJ and GrpE was significantly (10 times) weaker. These results indicate that, despite their high structural identity (approximately 80%) and similar mechanisms of action, the DnaK chaperones of closely related V. harveyi and E.coli bacteria differ functionally.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-004-0727-8