Tunable wideband absorber based on resistively loaded lossy high-impedance surface
A lossy high-impedance surface comprised of two layers of resistive frequency selective surfaces is employed to design a tunable electromagnetic absorber. The tunability is realized through changing the composite unit cell by moving the top layer mechanically. To explain the absorbing mechanism, an...
Saved in:
Published in | Chinese physics B Vol. 24; no. 10; pp. 181 - 185 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/24/10/104104 |
Cover
Loading…
Summary: | A lossy high-impedance surface comprised of two layers of resistive frequency selective surfaces is employed to design a tunable electromagnetic absorber. The tunability is realized through changing the composite unit cell by moving the top layer mechanically. To explain the absorbing mechanism, an equivalent circuit model with an interacting coefficient is proposed. Then, simulations and measurements are carried out and agree well with each other. Results show that the complex structure with a thickness less than λ0/4 is able to achieve a wideband absorption in a frequency range from5.90 GHz to 19.73 GHz. Moreover, it is tunable in the operation frequency band. |
---|---|
Bibliography: | frequency selective surface, high-impedance surface, microwave absorber, tunable Dang Ke-Zheng, Shi Jia-Ming,Wang Jia-Chun, Lin Zhi-Dan, Wang Qi-Chao(State Key Laboratory of Pulsed Power Laser, Electric Engineering Institute, Hefei 230037, China) A lossy high-impedance surface comprised of two layers of resistive frequency selective surfaces is employed to design a tunable electromagnetic absorber. The tunability is realized through changing the composite unit cell by moving the top layer mechanically. To explain the absorbing mechanism, an equivalent circuit model with an interacting coefficient is proposed. Then, simulations and measurements are carried out and agree well with each other. Results show that the complex structure with a thickness less than λ0/4 is able to achieve a wideband absorption in a frequency range from5.90 GHz to 19.73 GHz. Moreover, it is tunable in the operation frequency band. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/24/10/104104 |