Wave pattern motion and stick–slip limit cycle oscillation of a disc brake
This paper examines the dynamic response of a rotating squealing disc brake subject to distributed nonlinear contact stresses where two brake pads are assumed to be stationary and rigid. The friction stresses produce high-frequency vibrations that exhibit standing or traveling waves on the disc surf...
Saved in:
Published in | Journal of sound and vibration Vol. 325; no. 3; pp. 552 - 564 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
21.08.2009
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-460X 1095-8568 |
DOI | 10.1016/j.jsv.2009.03.030 |
Cover
Loading…
Summary: | This paper examines the dynamic response of a rotating squealing disc brake subject to distributed nonlinear contact stresses where two brake pads are assumed to be stationary and rigid. The friction stresses produce high-frequency vibrations that exhibit standing or traveling waves on the disc surface. The wave pattern resulting from the binary flutter mechanism of one transverse doublet mode pair is studied here. The results show that the wave pattern is associated with mode-coupling character. For a steady-squealing mode, the stick zone of the contact area is determined by a smooth friction–velocity curve having both negative and positive slopes. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2009.03.030 |