Design and Implementation of a Post-Quantum Group Authenticated Key Exchange Protocol With the LibOQS Library: A Comparative Performance Analysis From Classic McEliece, Kyber, NTRU, and Saber
Group authenticated key exchange protocols (GAKE) are cryptographic tools enabling a group of several users communicating through an insecure channel to securely establish a common shared high-entropy key. In the last years, the need to design cryptographic tools which provide security in the presen...
Saved in:
Published in | IEEE access Vol. 10; pp. 120951 - 120983 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Group authenticated key exchange protocols (GAKE) are cryptographic tools enabling a group of several users communicating through an insecure channel to securely establish a common shared high-entropy key. In the last years, the need to design cryptographic tools which provide security in the presence of attackers with access to quantum resources has become unquestionable; the field dealing with these types of protocols is usually referred to as Post-Quantum Cryptography. The U.S. National Institute for Standards and Technology (NIST) launched in 2017 an open call to find suitable post-quantum public-key algorithms for standardization. In this work, we design a GAKE that can be instantiated with any key encapsulation mechanism (KEM) that satisfies the strong security notion IND-CCA, matching NIST's requirements for this primitive. We have implemented our GAKE with the four finalist KEMs from the NIST process: Classic McEliece, Kyber, NTRU, and Saber, making use of the open-source library LibOQS where these algorithms are provided. We have conducted a detailed comparative performance analysis of the resulting GAKE protocols, taking into account all the parameter sets proposed in the submissions. We have also made a performance analysis of all the involved building pieces, including the four finalist KEMs. Finally, we also compare our GAKE with a previous proposal implemented with Kyber. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3222389 |