Inactivation of endopolyphosphatase gene PPN1 results in inhibition of expression of exopolyphosphatase PPX1 and high-molecular-mass exopolyphosphatase not encoded by PPX1 in Saccharomyces cerevisiae

Saccharomyces cerevisiae possesses multiple forms of exopolyphosphatases, the enzymes involved in the metabolism of inorganic polyphosphates, which are important regulatory compounds. In S. cerevisiae, inactivation of endopolyphosphatase gene PPN1 leads to the inhibition of expression of both exopol...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1674; no. 1; pp. 98 - 102
Main Authors Lichko, Lidiya, Kulakovskaya, Tatyana, Kulaev, Igor
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 06.09.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Saccharomyces cerevisiae possesses multiple forms of exopolyphosphatases, the enzymes involved in the metabolism of inorganic polyphosphates, which are important regulatory compounds. In S. cerevisiae, inactivation of endopolyphosphatase gene PPN1 leads to the inhibition of expression of both exopolyphosphatase PPX1 and high-molecular-mass exopolyphosphatase of ∼1000 kDa not encoded by PPX1. In the single endopolyphosphatase mutant CRN, the expression of exopolyphosphatase PPX1 decreases 6.5-fold and 2.5-fold at the stationary and exponential growth phases, respectively, as compared with the parent strain CRY. In this mutant, the activity of the high-molecular-mass exopolyphosphatase of ∼1000 kDa decreases ∼10-fold as compared with that in strains with the PPN1 gene. In a double mutant of PPX1 and PPN1, no exopolyphosphatase activity is detected in the cytosol at the stationary growth phase. Thus, the exopolyPase activity in cell cytosol depends on the endopolyPase gene PPN1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
0006-3002
1872-8006
DOI:10.1016/j.bbagen.2004.06.004