Thermally induced delamination and buckling of a ceramic coating with temperature-dependent material properties from porous substrate at high temperatures

Ceramic coatings are ideal materials for thermal protection systems such as the thermal shield of the space shuttle. In a high-temperature environment, material properties of ceramics strongly depend on the temperature. The severe mismatch of material properties between the ceramic coating and the s...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Vol. 231; no. 6; pp. 2143 - 2154
Main Authors Cui, Y. J., Li, J. E., Wang, B. L., Wang, K. F.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.06.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ceramic coatings are ideal materials for thermal protection systems such as the thermal shield of the space shuttle. In a high-temperature environment, material properties of ceramics strongly depend on the temperature. The severe mismatch of material properties between the ceramic coating and the substrate can result in progressive mechanical failure of thermal protection system. This paper investigates delamination and buckling behaviors between a temperature-dependent ceramic coating and a porous substrate. The shear stress intensity factor at the tips of the delamination crack and buckling region are derived. Based on the stress intensity factor, the critical temperature of the coating buckling from the substrate is obtained. A fitting formula of the critical buckling temperature with respect to the length-to-thickness ratio of the coating, and the buckling region is obtained. It is found that the effect of the temperature dependence of material properties on delamination and buckling is more significant for higher temperatures than for lower temperatures. The critical temperatures of delamination and buckling are overestimated if the temperature dependence of material properties is neglected. The critical temperatures of delamination and buckling increase with the porosity of the substrate.
ISSN:0001-5970
1619-6937
DOI:10.1007/s00707-020-02624-8