Effects of Ambient Humidity on a Micromachined Silicon Thermal Wind Sensor

The effect of ambient humidity on a micromachined silicon 2-D thermal wind sensor has been investigated. The sensor includes a central heater and four temperature sensors. It measures the flow-induced temperature gradient on the heated surface. Properties of the ambient air, such as density, viscosi...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 23; no. 2; pp. 253 - 255
Main Authors BEI CHEN, ZHU, Yan-Qing, MING QIN, HUANG, Qing-An
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of ambient humidity on a micromachined silicon 2-D thermal wind sensor has been investigated. The sensor includes a central heater and four temperature sensors. It measures the flow-induced temperature gradient on the heated surface. Properties of the ambient air, such as density, viscosity, heat conductivity, and specific heat capacity, are theoretically presented to explore their effects on the performance of the sensor at different relative humidity levels. The output of the sensor as a function of wind speed at different relative humidity levels has been measured. It shows that there is a measurable effect at both high relative humidity and temperature. The results presented here provide a valuable reference for the practical applications of the wind sensor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2014.2298403