Comparison of the regulation of carboxypeptidase E and prolactin in GH4C1 cells, a rat pituitary cell line

The treatment of GH4C1 cells, a prolactin-producing rat anterior pituitary cell line, with estradiol (1 nM), insulin (300 nM) and epidermal growth factor (10 nM) has been previously shown to substantially increase both the intracellular level of prolactin, as well as the number of secretory granules...

Full description

Saved in:
Bibliographic Details
Published inNeuroendocrinology Vol. 51; no. 6; p. 658
Main Authors Fricker, L D, Reaves, B J, Das, B, Dannies, P S
Format Journal Article
LanguageEnglish
Published Switzerland 01.06.1990
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The treatment of GH4C1 cells, a prolactin-producing rat anterior pituitary cell line, with estradiol (1 nM), insulin (300 nM) and epidermal growth factor (10 nM) has been previously shown to substantially increase both the intracellular level of prolactin, as well as the number of secretory granules. In this study, we examined the effect of this treatment on levels of carboxypeptidase E (CPE), a prohormone-processing enzyme. GH4C1 cells contain CPE mRNA and enzymatic activity. The secretion of both prolactin and CPE activity from GH4C1 cells is stimulated 10-fold by 50 mM KCl and 2- to 3-fold by 100 nM thyrotropin-releasing hormone, suggesting that these two proteins are contained in secretory granules. Treatment of GH4C1 cells with estradiol, insulin, and epidermal growth factor causes an increase in the intracellular level of CPE to approximately 2-fold of control values. This change is much smaller than the change in the level of prolactin: intracellular prolactin is increased 140-fold by the treatment. Kinetic analysis of the CPE activity indicates that the treatment does not alter the Km of substrate hydrolysis, with the change in activity the result of an increase in apparent Vmax. Northern blot analysis indicates that the level of CPE mRNA is not influenced (less than 10%) by the treatment, whereas the level of prolactin mRNA is increased 9-fold. These results indicate that CPE is not coordinately regulated with prolactin in the GH4C1 cell line, although some regulation of CPE activity does occur.
ISSN:0028-3835
DOI:10.1159/000125407