Decision-Tree Application to Predict and Spatialize the Wood Productivity Probabilities of Eucalyptus Plantations
Brazil is one of the world’s wood short-fiber producers, cultivating 7.5 million hectares of eucalypt trees. Foresters and resource managers often face difficulties in surveying reliable Eucalyptus productivity levels for the purpose of purchasing and prospecting lands. Spatial data science (DS) and...
Saved in:
Published in | Forests Vol. 14; no. 7; p. 1334 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Brazil is one of the world’s wood short-fiber producers, cultivating 7.5 million hectares of eucalypt trees. Foresters and resource managers often face difficulties in surveying reliable Eucalyptus productivity levels for the purpose of purchasing and prospecting lands. Spatial data science (DS) and machine learning (ML) provide powerful approaches to make the best use of the large datasets available today. Agriculture has made great use of these approaches, and in this paper, we explore how forestry can benefit as well. We hypothesized that both DS and ML techniques can be used to improve Eucalyptus productivity zoning based on multiple operational datasets of tree growth and environment. Based on more than 12,000 permanent forest inventory plots of commercial Eucalyptus plantations and the climate, soil, and altitude variables associated with them, a supervised ML approach was adjusted to model the forest plantation productivity. A multi-tuning of the decision-tree (DT) algorithm hyperparameters was prepared to yield 450 DT models, with a better one delivering an RMSE of 53.5 m3 ha−1, split in 35 terminal nodes, here interpreted as Eucalyptus productivity zones. The DT model showed an optimum performance index of 0.83, a coefficient of determination of 0.91, a root mean squared error of 12.3 m3 ha−1, and a mean absolute percentage error only of 3.1% in predicting the testing dataset throughout the study area. The DT rule set was interpreted in a user-friendly table and was prepared to classify any location within the study area in each one of the 35 productivity zones based on the required environment variables of the DT algorithm. The high quality of the model obtained made it possible to spatialize the DT rules, providing a reliable cartographic visualization of the probability levels of true Eucalyptus productivity for a huge region of forest-based industries in Brazil. These data-science techniques also provided a yield gap analysis using a very down-to-earth approach. We estimated a yield gap by an amount of 4.2 × 107 m3, representing a few more than 113,000 ha, or 15% of the current forest base. This is the amount of avoided area expansion to accumulate the same wood stock in case the productivity is raised to the attainable level in each zone. This present study provided deeper analysis and reproducible tools to manage forest assets sustainably. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14071334 |