Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling

In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry....

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanics and physics of solids Vol. 88; pp. 100 - 122
Main Authors Revil-Baudard, Benoit, Cazacu, Oana, Flater, Philip, Chandola, Nitin, Alves, J.L.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-5096
DOI:10.1016/j.jmps.2016.01.003