Kondo transport through a quantum dot coupled with side quantum-dot structures

This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green's function. In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures: a single...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 19; no. 7; pp. 1 - 7
Main Author 江兆潭
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green's function. In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures: a single-QD atom and a double-QD molecule. It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs, the one-, two-, or three-valley conductance pattern can be obtained. Furthermore, it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule. More interestingly, an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.
Bibliography:quantum transport, Kondo effect, quantum dot
TU311.3
11-5639/O4
O471.1
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/19/7/077307