Micro‐hardness and gamma‐ray attenuation properties of lead iron phosphate glasses

For safe immobilization of nuclear waste, lead-iron phosphate glasses are promising as high-level commercial and defense materials. In this research article, the compositional, elastic, and gamma shielding properties of the glasses containing (80 − x)P 2 O 5 – xFe 2 O 3 –20PbO with x = 20, 25, 30, 3...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 32; no. 10; pp. 13906 - 13916
Main Authors Al-Buriahi, M. S., Eke, Canel, Alomairy, Sultan, Mutuwong, Chalermpon, Sfina, Noureddine
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For safe immobilization of nuclear waste, lead-iron phosphate glasses are promising as high-level commercial and defense materials. In this research article, the compositional, elastic, and gamma shielding properties of the glasses containing (80 − x)P 2 O 5 – xFe 2 O 3 –20PbO with x = 20, 25, 30, 35 mol% were reported. The compositional and elastic parameters including the micro-hardness of the investigated glass samples were obtained based on Makishima-Mackenzie’s theory (MM-theory) and R model. We found that the deviation between these two methods decreased as Fe 2 O 3 concentrations increased from 20 to 35 mol %. Additionally, γ-ray attenuation properties of the P 2 O 5 – Fe 2 O 3 –PbO glass system were evaluated using Geant4 simulation toolkit. The simulation results were compared with the theoretical ones extracted from Py-MLBUF software. The obtained results reveal that the MACs of the glasses vary from 0.030 to 40.014 cm 2 /g for PFP-A, from 0.031 to 41.502 cm 2 /g for PFP-B, 0.031 to 43 cm 2 /g for PFP-C and from 0.031 to 44.400 cm 2 /g for PFP-D. Maximum Z eff values of present glasses are obtained at 0.10 MeV whereas minimum Z eff values are obtained at 1.5 MeV. Finally, the fundamental γ-ray attenuation properties of the P 2 O 5 – Fe 2 O 3 –PbO glass system are found to be comparable with those of traditional and commercial radiation shields such as RS-253-G18 and RS-360 commercial glasses, ordinary concrete, barite concrete and TBZP10 from scientific literature. The results indicated that MFPs of the investigated glasses are lower than those of RS-360 glass, but they are higher than those of barite concrete and TBZP10.
AbstractList For safe immobilization of nuclear waste, lead-iron phosphate glasses are promising as high-level commercial and defense materials. In this research article, the compositional, elastic, and gamma shielding properties of the glasses containing (80 − x)P2O5– xFe2O3–20PbO with x = 20, 25, 30, 35 mol% were reported. The compositional and elastic parameters including the micro-hardness of the investigated glass samples were obtained based on Makishima-Mackenzie’s theory (MM-theory) and R model. We found that the deviation between these two methods decreased as Fe2O3 concentrations increased from 20 to 35 mol %. Additionally, γ-ray attenuation properties of the P2O5– Fe2O3–PbO glass system were evaluated using Geant4 simulation toolkit. The simulation results were compared with the theoretical ones extracted from Py-MLBUF software. The obtained results reveal that the MACs of the glasses vary from 0.030 to 40.014 cm2/g for PFP-A, from 0.031 to 41.502 cm2/g for PFP-B, 0.031 to 43 cm2/g for PFP-C and from 0.031 to 44.400 cm2/g for PFP-D. Maximum Zeff values of present glasses are obtained at 0.10 MeV whereas minimum Zeff values are obtained at 1.5 MeV. Finally, the fundamental γ-ray attenuation properties of the P2O5– Fe2O3–PbO glass system are found to be comparable with those of traditional and commercial radiation shields such as RS-253-G18 and RS-360 commercial glasses, ordinary concrete, barite concrete and TBZP10 from scientific literature. The results indicated that MFPs of the investigated glasses are lower than those of RS-360 glass, but they are higher than those of barite concrete and TBZP10.
For safe immobilization of nuclear waste, lead-iron phosphate glasses are promising as high-level commercial and defense materials. In this research article, the compositional, elastic, and gamma shielding properties of the glasses containing (80 − x)P 2 O 5 – xFe 2 O 3 –20PbO with x = 20, 25, 30, 35 mol% were reported. The compositional and elastic parameters including the micro-hardness of the investigated glass samples were obtained based on Makishima-Mackenzie’s theory (MM-theory) and R model. We found that the deviation between these two methods decreased as Fe 2 O 3 concentrations increased from 20 to 35 mol %. Additionally, γ-ray attenuation properties of the P 2 O 5 – Fe 2 O 3 –PbO glass system were evaluated using Geant4 simulation toolkit. The simulation results were compared with the theoretical ones extracted from Py-MLBUF software. The obtained results reveal that the MACs of the glasses vary from 0.030 to 40.014 cm 2 /g for PFP-A, from 0.031 to 41.502 cm 2 /g for PFP-B, 0.031 to 43 cm 2 /g for PFP-C and from 0.031 to 44.400 cm 2 /g for PFP-D. Maximum Z eff values of present glasses are obtained at 0.10 MeV whereas minimum Z eff values are obtained at 1.5 MeV. Finally, the fundamental γ-ray attenuation properties of the P 2 O 5 – Fe 2 O 3 –PbO glass system are found to be comparable with those of traditional and commercial radiation shields such as RS-253-G18 and RS-360 commercial glasses, ordinary concrete, barite concrete and TBZP10 from scientific literature. The results indicated that MFPs of the investigated glasses are lower than those of RS-360 glass, but they are higher than those of barite concrete and TBZP10.
Author Al-Buriahi, M. S.
Sfina, Noureddine
Alomairy, Sultan
Eke, Canel
Mutuwong, Chalermpon
Author_xml – sequence: 1
  givenname: M. S.
  surname: Al-Buriahi
  fullname: Al-Buriahi, M. S.
  email: mohammed.al-buriahi@ogr.sakarya.edu.tr
  organization: Department of Physics, Sakarya University
– sequence: 2
  givenname: Canel
  surname: Eke
  fullname: Eke, Canel
  organization: Department of Mathematics and Science Education, Faculty of Education, Akdeniz University
– sequence: 3
  givenname: Sultan
  surname: Alomairy
  fullname: Alomairy, Sultan
  organization: Department of Physics, College of Science, Taif University
– sequence: 4
  givenname: Chalermpon
  orcidid: 0000-0002-5827-0850
  surname: Mutuwong
  fullname: Mutuwong, Chalermpon
  email: chalermpon.mu.60@ubu.ac.th
  organization: Department of Physics, Ubon Ratchathani University
– sequence: 5
  givenname: Noureddine
  surname: Sfina
  fullname: Sfina, Noureddine
  organization: Department of Physics, College of Sciences and Arts in Mahayel Asir, King Khalid University, Laboratoire de la Matière Condensée et des Nanosciences (LMCN), Département de Physique, Faculté des Sciences de Monastir, Université de Monastir
BookMark eNp9kM1KAzEQx4NUsFZfwFPAc3TytckepfgFFS8q3kLYzbZbttmapIfefASf0Scx7QqCh54GhvnN_Od3ika-9w6hCwpXFEBdRwpaCgKMEpBlURB9hMZUKk6EZu8jNIZSKiIkYyfoNMYlABSC6zF6e2qr0H9_fi1sqL2LEVtf47ldrWxuBrvFNiXnNza1vcfr0K9dSK2LuG9w52yN27DrL_q4Xtjk8LyzMbp4ho4b20V3_lsn6PXu9mX6QGbP94_TmxmpuNSJaKsUE1QWGlipRFMKx3JgrWjVuNrVAhhY4LpuykKVVBXcSpANKF0wXXHgE3Q57M3JPjYuJrPsN8Hnk4ZJnv8XqmR5ig1T-dUYg2vMOrQrG7aGgtn5M4M_k_2ZvT-jM6T_QVWb9hpSsG13GOUDGvMdP3fhL9UB6gfRfogU
CitedBy_id crossref_primary_10_1007_s10854_025_14391_0
crossref_primary_10_1016_j_radphyschem_2023_110877
crossref_primary_10_1007_s41779_022_00771_w
crossref_primary_10_1016_j_inoche_2024_113102
crossref_primary_10_1016_j_radphyschem_2022_110037
crossref_primary_10_1016_j_cemconcomp_2024_105608
crossref_primary_10_1007_s10854_021_06402_7
crossref_primary_10_1016_j_pnucene_2022_104256
crossref_primary_10_1016_j_pnucene_2023_104690
crossref_primary_10_1016_j_heliyon_2023_e14435
crossref_primary_10_1016_j_radphyschem_2022_110164
crossref_primary_10_1016_j_radphyschem_2022_110044
crossref_primary_10_1016_j_radphyschem_2023_111452
crossref_primary_10_1016_j_pnucene_2022_104457
crossref_primary_10_3390_inorganics11010027
crossref_primary_10_1007_s00339_023_06681_3
crossref_primary_10_1007_s12633_024_02994_x
crossref_primary_10_1016_j_radphyschem_2023_111118
crossref_primary_10_1016_j_radphyschem_2024_111579
crossref_primary_10_1016_j_radphyschem_2024_112505
crossref_primary_10_1016_j_medengphy_2023_104066
crossref_primary_10_1016_j_net_2022_05_006
crossref_primary_10_1007_s12633_023_02699_7
crossref_primary_10_1007_s41779_022_00749_8
crossref_primary_10_1007_s11664_023_10613_5
crossref_primary_10_1016_j_ceramint_2024_12_078
crossref_primary_10_1007_s12633_023_02636_8
crossref_primary_10_1007_s00339_022_05475_3
crossref_primary_10_1016_j_radphyschem_2023_111168
crossref_primary_10_1016_j_radphyschem_2023_111200
crossref_primary_10_2478_msp_2021_0019
crossref_primary_10_1007_s11664_023_10698_y
crossref_primary_10_1016_j_radphyschem_2023_111088
crossref_primary_10_1016_j_radphyschem_2023_111440
crossref_primary_10_1016_j_radphyschem_2024_112150
crossref_primary_10_1007_s41779_021_00616_y
crossref_primary_10_1016_j_apradiso_2025_111742
crossref_primary_10_1016_j_radphyschem_2023_111507
crossref_primary_10_1007_s11082_023_05788_4
crossref_primary_10_1016_j_optmat_2023_114202
crossref_primary_10_15251_CL_2025_221_23
crossref_primary_10_1007_s12633_023_02671_5
crossref_primary_10_1016_j_optmat_2023_114363
crossref_primary_10_1016_j_ceramint_2024_06_362
crossref_primary_10_1016_j_jmrt_2023_01_062
crossref_primary_10_1016_j_radphyschem_2023_111279
crossref_primary_10_1088_1402_4896_ad764e
crossref_primary_10_1016_j_pnucene_2021_104038
crossref_primary_10_1007_s11082_024_06304_y
crossref_primary_10_1088_1402_4896_ac4121
crossref_primary_10_1016_j_radphyschem_2023_110766
crossref_primary_10_1016_j_apradiso_2023_111139
crossref_primary_10_1016_j_jmrt_2021_10_113
crossref_primary_10_1016_j_radphyschem_2024_111637
crossref_primary_10_1155_2024_8812313
crossref_primary_10_1016_j_radphyschem_2024_111517
crossref_primary_10_1016_j_radphyschem_2023_110969
crossref_primary_10_1016_j_anucene_2024_110863
crossref_primary_10_1016_j_pnucene_2022_104482
crossref_primary_10_1016_j_radphyschem_2023_111301
crossref_primary_10_1016_j_jnoncrysol_2023_122346
crossref_primary_10_1016_j_radphyschem_2023_111461
Cites_doi 10.1016/S0022-3093(97)00347-5
10.1016/j.ceramint.2020.04.240
10.1016/j.physb.2010.01.121
10.1016/j.jnoncrysol.2015.03.034
10.5562/cca2759
10.1016/j.ceramint.2020.03.110
10.1107/S0108767387099793
10.1016/j.ceramint.2020.03.091
10.1016/j.optcom.2021.126944
10.1007/s00339-019-3254-9
10.1016/S0022-3093(98)00759-5
10.1016/j.jnoncrysol.2014.02.020
10.1016/j.jnoncrysol.2020.120275
10.1016/j.radphyschem.2019.108507
10.1016/j.vibspec.2004.07.002
10.1016/S0022-3093(99)00678-X
10.1016/j.pnucene.2020.103511
10.1016/j.ceramint.2020.11.195
10.1007/s10904-020-01750-z
10.1016/0022-3093(85)90279-0
10.1016/j.jnoncrysol.2020.120171
10.1016/j.jnoncrysol.2020.120130
10.1016/j.saa.2018.08.038
10.1016/j.jnoncrysol.2017.12.001
10.1016/0022-3093(75)90047-2
10.1016/j.physb.2019.411946
10.1016/S0306-4549(97)00003-0
10.1016/j.anucene.2020.107845
10.1007/s00339-016-0739-7
10.1016/j.jnoncrysol.2007.01.101
10.1111/jace.16770
10.1016/S0022-3697(03)00286-5
10.1007/s41779-020-00457-1
10.1016/j.ceramint.2020.10.168
10.1016/0022-3093(86)90040-2
10.1016/S0022-3093(01)00350-7
10.1007/s10973-011-1857-2
10.1016/0022-3093(73)90053-7
10.1016/j.radphyschem.2018.08.025
10.1016/j.ceramint.2020.06.226
10.1016/j.ceramint.2020.09.263
10.1126/science.226.4670.45
10.1016/S0168-9002(03)01368-8
10.1016/j.jnoncrysol.2013.08.014
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-021-05966-8
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-482X
EndPage 13916
ExternalDocumentID 10_1007_s10854_021_05966_8
GrantInformation_xml – fundername: Taif University
  grantid: TURSP-2020/63
  funderid: http://dx.doi.org/10.13039/501100006261
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-8a7724156802974f94e2482871cfeded4020a038df96791763a505f078628c303
IEDL.DBID BENPR
ISSN 0957-4522
IngestDate Fri Jul 25 12:18:58 EDT 2025
Tue Jul 01 02:35:04 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Fri Feb 21 02:49:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-8a7724156802974f94e2482871cfeded4020a038df96791763a505f078628c303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5827-0850
PQID 2535734792
PQPubID 326250
PageCount 11
ParticipantIDs proquest_journals_2535734792
crossref_primary_10_1007_s10854_021_05966_8
crossref_citationtrail_10_1007_s10854_021_05966_8
springer_journals_10_1007_s10854_021_05966_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LiXYangHSongXWuYJ. Non-Cryst. Solids20133792081:CAS:528:DC%2BC3sXhsFKqsLfJ10.1016/j.jnoncrysol.2013.08.014
LiJZhangYNianSWuZCaoWZhouNWangDAppl. Phys. A20171232051:CAS:528:DC%2BC2sXjs1OgtL4%3D10.1007/s00339-016-0739-7
RavikumarRVSSNIkedaKChandrasekkarAVReddyYPRaoPSYamauchiJJ. Phys. Chem. Solids20036424331:CAS:528:DC%2BD3sXosVKls7Y%3D10.1016/S0022-3697(03)00286-5
MansourEEl-DamraviGCondensPBMatter.201040521371:CAS:528:DC%2BC3cXjtFKqs7w%3D10.1016/j.physb.2010.01.121
BashterIIAnn. Nucl. Energy19972413891:CAS:528:DyaK2sXmslKlsbc%3D10.1016/S0306-4549(97)00003-0
SalesBCBoatnerLANon-CrystJSolids198679831:CAS:528:DyaL28Xhtlyjs70%3D10.1016/0022-3093(86)90040-2
Moguš-MilankovićAŠantićAPavićLSklepićKCroat. Chem. Acta2015885531:CAS:528:DC%2BC28Xht12ht7%2FE10.5562/cca2759
Al-BuriahiMSTongucBTRadiat. Phys. Chem.20201661085071:CAS:528:DC%2BC1MXhvFWjsrrE10.1016/j.radphyschem.2019.108507
MakishimaAMackenzieJDNon-CrystJSolids1975171471:CAS:528:DyaE2MXkvVertb4%3D10.1016/0022-3093(75)90047-2
MoranaRNon-CrystJSolids2000263–26438210.1016/S0022-3093(99)00678-X
Al-BuriahiMSAlajeramiYSMAbouhaswaASAlalawiANutaroTTongucBJ. Non-Cryst. Solids20205441201711:CAS:528:DC%2BB3cXhtV2rs7jL10.1016/j.jnoncrysol.2020.120171
AbouhaswaASMharebMHAAlalawiAAl-BuriahiMSJ. Non-Cryst. Solids20205431201301:CAS:528:DC%2BB3cXhtVWiurrF10.1016/j.jnoncrysol.2020.120130
Faheem NaqviSSaxenaNSThermJAnal. Calorim.201210811611:CAS:528:DC%2BC38Xns1erurc%3D10.1007/s10973-011-1857-2
P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Spectrochim. Acta A Mol. Biomol. Spectrosc. 206, 367 (2019). https://doi.org/10.1016/j.saa.2018.08.038
ChangKHLeeTHHwaLGChin. J. Phys2003414141:CAS:528:DC%2BD3sXnt12hsrs%3D
Al-BuriahiMSBakhshEMTongucBBahadar KhanSCeram. Int.202046190781:CAS:528:DC%2BB3cXoslekt7w%3D10.1016/j.ceramint.2020.04.240
Al-BuriahiMSSinghVPJ. Aust. Ceram. Soc.20205611271:CAS:528:DC%2BB3cXktlyhsb0%3D10.1007/s41779-020-00457-1
DoweidarHMoustafaYMEl-EgiliKAbbasIVib. Spectrosc.200537911:CAS:528:DC%2BD2MXksVGisA%3D%3D10.1016/j.vibspec.2004.07.002
KumarASayyedMIDongMXueXJ. Non-Cryst. Solids20184816041:CAS:528:DC%2BC2sXhvFCjtrjF10.1016/j.jnoncrysol.2017.12.001
TischendorfBOtaigbeJUWienchJWPruskiMSalesBCJ. Non-Cryst. Solids20012821471:CAS:528:DC%2BD3MXislOmsbo%3D10.1016/S0022-3093(01)00350-7
HudgensJJBrowRKTallantDRMartinSWJ. Non-Cryst. Solids1998223211:CAS:528:DyaK2sXotVyiu70%3D10.1016/S0022-3093(97)00347-5
Al-BuriahiMSArslanHTongucBTIndian J. Pure Appl. Phys.201957433
Al-BuriahiMSEl-AgawanyFISriwunkumCAkyıldırımHArslanHTongucBTEl-MallawanyRRammahYSPhysica B Condens. Matter.20195814119461:CAS:528:DC%2BC1MXisVKqt7zI10.1016/j.physb.2019.411946
BoukhrisIKebailiIAl-BuriahiMSAlalawiAAbouhaswaASTongucBCeram. Int.202046244351:CAS:528:DC%2BB3cXhtlait7zL10.1016/j.ceramint.2020.06.226
https://www.schott.com/advanced_optics/english/products/optical-materials/special-materials/radiation-shielding-glasses/index.html. Accessed 28 March 2021
TongucBTArslanHAl-BuriahiMSRadiat. Phys. Chem.2018153861:CAS:528:DC%2BC1cXhslGnsbvN10.1016/j.radphyschem.2018.08.025
Al-BuriahiMSSomailyHHAlalawiAAlraddatiSJ. Inorg. Organomet. Polym.20213110471:CAS:528:DC%2BB3cXhvVGhsLnP10.1007/s10904-020-01750-z
SalesBCBoatnerLAScience1984226451:CAS:528:DyaL2cXlsl2ltrg%3D10.1126/science.226.4670.45
Al-HadeethiYSayyedMIProg. Nucl. Energy20201291035111:CAS:528:DC%2BB3cXhvVOrsLbJ10.1016/j.pnucene.2020.103511
Al-BuriahiMSTongucBPerisanogluUKavazECeram. Int.202046233471:CAS:528:DC%2BB3cXmtVKrtrc%3D10.1016/j.ceramint.2020.03.110
DayDEWuZRayCSHrmaPJ. Non-Cryst. Solids199824111:CAS:528:DyaK1cXmsVWqt7k%3D10.1016/S0022-3093(98)00759-5
Al-BuriahiMSSinghVPAlalawiASriwunkumCTongucBTCeram. Int.202046154641:CAS:528:DC%2BB3cXkslejsL0%3D10.1016/j.ceramint.2020.03.091
OmraniROKrimiSVideauJJKhattechIEl JazouliAJemalMJ. Non-Cryst. Solids201439051:CAS:528:DC%2BC2cXlvVGjtb0%3D10.1016/j.jnoncrysol.2014.02.020
CreaghDCHubbellJHActa Cryst. A19874310210.1107/S0108767387099793
SalesBCAbrahamMMBatesJBBoatnerLAJ. Non-Cryst. Solids1985711031:CAS:528:DyaL2MXksVWhsLg%3D10.1016/0022-3093(85)90279-0
Al-HadeethiYSayyedMINuneMCeram. Int.20214739881:CAS:528:DC%2BB3cXhvFyjs7rO10.1016/j.ceramint.2020.09.263
W.ZhongjianJZhaodiHYichenHYijianSLijuanJ. Non-Cryst. Solids200835411851:CAS:528:DC%2BD1cXhs1Gms74%3D10.1016/j.jnoncrysol.2007.01.101
MannKSMannSSAnn. Nucl. Energy20211501078451:CAS:528:DC%2BB3cXhvFWls7rN10.1016/j.anucene.2020.107845
XingJShangFChenGCeram. Int.20214783301:CAS:528:DC%2BB3cXisVClu7bL10.1016/j.ceramint.2020.11.195
CuiSChenGChenYJinLShangFJ. Xu. J. Am. Ceram. Soc.202010310571:CAS:528:DC%2BC1MXhslKht77I10.1111/jace.16770
Al-BuriahiMSBakhshEMTongucBBahadar KhanSCeram. Int.202146190781:CAS:528:DC%2BB3cXoslekt7w%3D10.1016/j.ceramint.2020.04.240
LiSHuangSWuFYueYJ. Non-Cryst. Solids2015419451:CAS:528:DC%2BC2MXlslCgu7c%3D10.1016/j.jnoncrysol.2015.03.034
MakishimaAMackenzieJDNon-CrystJSolids197312351:CAS:528:DyaE3sXkt1aqsrw%3D10.1016/0022-3093(73)90053-7
AgostinelliSAllisonJAmakoKApostolakisJAraujoHArcePAsaiMNucl. Instrum. Methods Phys. Res., A20035062501:CAS:528:DC%2BD3sXksF2nsL0%3D10.1016/S0168-9002(03)01368-8
Abd El-MoneimAAlfifiHYJ. Non-Cryst. Solids20205461202751:CAS:528:DC%2BB3cXhtl2isb3E10.1016/j.jnoncrysol.2020.120275
Al-BuriahiMSSriwunkumCArslanHATongucBTBourhamMAAppl. Phys. A2020126681:CAS:528:DC%2BB3cXivVGrug%3D%3D10.1007/s00339-019-3254-9
Al-BuriahiMSHegazyHHAlresheediFOlarinoyeIOAlgarniHTekinHOSaudiHACeram. Int.20214759511:CAS:528:DC%2BB3cXit1aku7vJ10.1016/j.ceramint.2020.10.168
DoweidarHEl-EgiliKMoustafaYMAbbasIPhys. Chem. Glasses: Eur. J. Glass Sci. Technol. B2006476101:CAS:528:DC%2BD2sXhslOqsLc%3D
LiuLXingJShangFChenGOpt. Commun.20214901269441:CAS:528:DC%2BB3MXmvFOitbs%3D10.1016/j.optcom.2021.126944
PengYBDayDEGlass Tech.1991322001:CAS:528:DyaK38Xhsl2gtLs%3D
MS Al-Buriahi (5966_CR41) 2021; 46
AS Abouhaswa (5966_CR40) 2020; 543
MS Al-Buriahi (5966_CR39) 2019; 581
A Makishima (5966_CR28) 1973; 12
BC Sales (5966_CR11) 1985; 71
S Cui (5966_CR13) 2020; 103
S Agostinelli (5966_CR31) 2003; 506
I Boukhris (5966_CR33) 2020; 46
J Xing (5966_CR12) 2021; 47
MS Al-Buriahi (5966_CR34) 2020; 46
YB Peng (5966_CR18) 1991; 32
MS Al-Buriahi (5966_CR44) 2020; 126
DC Creagh (5966_CR32) 1987; 43
MS Al-Buriahi (5966_CR45) 2020; 56
II Bashter (5966_CR38) 1997; 24
JJ Hudgens (5966_CR2) 1998; 223
MS Al-Buriahi (5966_CR42) 2020; 46
RVSSN Ravikumar (5966_CR1) 2003; 64
A Moguš-Milanković (5966_CR23) 2015; 88
X Li (5966_CR9) 2013; 379
S Faheem Naqvi (5966_CR5) 2012; 108
A Abd El-Moneim (5966_CR30) 2020; 546
KH Chang (5966_CR7) 2003; 41
H Doweidar (5966_CR21) 2006; 47
J W.Zhongjian (5966_CR22) 2008; 354
B Tischendorf (5966_CR3) 2001; 282
A Makishima (5966_CR29) 1975; 17
MS Al-Buriahi (5966_CR27) 2020; 544
DE Day (5966_CR19) 1998; 241
MS Al-Buriahi (5966_CR43) 2020; 46
BC Sales (5966_CR20) 1986; 79
5966_CR37
5966_CR36
KS Mann (5966_CR35) 2021; 150
RO Omrani (5966_CR6) 2014; 390
L Liu (5966_CR10) 2021; 490
MS Al-Buriahi (5966_CR48) 2020; 166
BT Tonguc (5966_CR47) 2018; 153
A Kumar (5966_CR24) 2018; 481
S Li (5966_CR17) 2015; 419
J Li (5966_CR16) 2017; 123
MS Al-Buriahi (5966_CR46) 2019; 57
Y Al-Hadeethi (5966_CR50) 2021; 47
MS Al-Buriahi (5966_CR25) 2021; 47
H Doweidar (5966_CR14) 2005; 37
Y Al-Hadeethi (5966_CR49) 2020; 129
BC Sales (5966_CR8) 1984; 226
MS Al-Buriahi (5966_CR26) 2021; 31
E Mansour (5966_CR4) 2010; 405
R Morana (5966_CR15) 2000; 263–264
References_xml – reference: Abd El-MoneimAAlfifiHYJ. Non-Cryst. Solids20205461202751:CAS:528:DC%2BB3cXhtl2isb3E10.1016/j.jnoncrysol.2020.120275
– reference: Al-BuriahiMSSomailyHHAlalawiAAlraddatiSJ. Inorg. Organomet. Polym.20213110471:CAS:528:DC%2BB3cXhvVGhsLnP10.1007/s10904-020-01750-z
– reference: Al-BuriahiMSSinghVPJ. Aust. Ceram. Soc.20205611271:CAS:528:DC%2BB3cXktlyhsb0%3D10.1007/s41779-020-00457-1
– reference: Al-HadeethiYSayyedMINuneMCeram. Int.20214739881:CAS:528:DC%2BB3cXhvFyjs7rO10.1016/j.ceramint.2020.09.263
– reference: RavikumarRVSSNIkedaKChandrasekkarAVReddyYPRaoPSYamauchiJJ. Phys. Chem. Solids20036424331:CAS:528:DC%2BD3sXosVKls7Y%3D10.1016/S0022-3697(03)00286-5
– reference: DoweidarHMoustafaYMEl-EgiliKAbbasIVib. Spectrosc.200537911:CAS:528:DC%2BD2MXksVGisA%3D%3D10.1016/j.vibspec.2004.07.002
– reference: Al-BuriahiMSBakhshEMTongucBBahadar KhanSCeram. Int.202146190781:CAS:528:DC%2BB3cXoslekt7w%3D10.1016/j.ceramint.2020.04.240
– reference: LiJZhangYNianSWuZCaoWZhouNWangDAppl. Phys. A20171232051:CAS:528:DC%2BC2sXjs1OgtL4%3D10.1007/s00339-016-0739-7
– reference: SalesBCBoatnerLAScience1984226451:CAS:528:DyaL2cXlsl2ltrg%3D10.1126/science.226.4670.45
– reference: Al-HadeethiYSayyedMIProg. Nucl. Energy20201291035111:CAS:528:DC%2BB3cXhvVOrsLbJ10.1016/j.pnucene.2020.103511
– reference: PengYBDayDEGlass Tech.1991322001:CAS:528:DyaK38Xhsl2gtLs%3D
– reference: LiSHuangSWuFYueYJ. Non-Cryst. Solids2015419451:CAS:528:DC%2BC2MXlslCgu7c%3D10.1016/j.jnoncrysol.2015.03.034
– reference: DoweidarHEl-EgiliKMoustafaYMAbbasIPhys. Chem. Glasses: Eur. J. Glass Sci. Technol. B2006476101:CAS:528:DC%2BD2sXhslOqsLc%3D
– reference: Al-BuriahiMSSinghVPAlalawiASriwunkumCTongucBTCeram. Int.202046154641:CAS:528:DC%2BB3cXkslejsL0%3D10.1016/j.ceramint.2020.03.091
– reference: Faheem NaqviSSaxenaNSThermJAnal. Calorim.201210811611:CAS:528:DC%2BC38Xns1erurc%3D10.1007/s10973-011-1857-2
– reference: MannKSMannSSAnn. Nucl. Energy20211501078451:CAS:528:DC%2BB3cXhvFWls7rN10.1016/j.anucene.2020.107845
– reference: Moguš-MilankovićAŠantićAPavićLSklepićKCroat. Chem. Acta2015885531:CAS:528:DC%2BC28Xht12ht7%2FE10.5562/cca2759
– reference: CreaghDCHubbellJHActa Cryst. A19874310210.1107/S0108767387099793
– reference: https://www.schott.com/advanced_optics/english/products/optical-materials/special-materials/radiation-shielding-glasses/index.html. Accessed 28 March 2021
– reference: TischendorfBOtaigbeJUWienchJWPruskiMSalesBCJ. Non-Cryst. Solids20012821471:CAS:528:DC%2BD3MXislOmsbo%3D10.1016/S0022-3093(01)00350-7
– reference: Al-BuriahiMSTongucBTRadiat. Phys. Chem.20201661085071:CAS:528:DC%2BC1MXhvFWjsrrE10.1016/j.radphyschem.2019.108507
– reference: TongucBTArslanHAl-BuriahiMSRadiat. Phys. Chem.2018153861:CAS:528:DC%2BC1cXhslGnsbvN10.1016/j.radphyschem.2018.08.025
– reference: SalesBCAbrahamMMBatesJBBoatnerLAJ. Non-Cryst. Solids1985711031:CAS:528:DyaL2MXksVWhsLg%3D10.1016/0022-3093(85)90279-0
– reference: CuiSChenGChenYJinLShangFJ. Xu. J. Am. Ceram. Soc.202010310571:CAS:528:DC%2BC1MXhslKht77I10.1111/jace.16770
– reference: Al-BuriahiMSArslanHTongucBTIndian J. Pure Appl. Phys.201957433
– reference: MakishimaAMackenzieJDNon-CrystJSolids197312351:CAS:528:DyaE3sXkt1aqsrw%3D10.1016/0022-3093(73)90053-7
– reference: Al-BuriahiMSBakhshEMTongucBBahadar KhanSCeram. Int.202046190781:CAS:528:DC%2BB3cXoslekt7w%3D10.1016/j.ceramint.2020.04.240
– reference: DayDEWuZRayCSHrmaPJ. Non-Cryst. Solids199824111:CAS:528:DyaK1cXmsVWqt7k%3D10.1016/S0022-3093(98)00759-5
– reference: P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Spectrochim. Acta A Mol. Biomol. Spectrosc. 206, 367 (2019). https://doi.org/10.1016/j.saa.2018.08.038
– reference: LiuLXingJShangFChenGOpt. Commun.20214901269441:CAS:528:DC%2BB3MXmvFOitbs%3D10.1016/j.optcom.2021.126944
– reference: SalesBCBoatnerLANon-CrystJSolids198679831:CAS:528:DyaL28Xhtlyjs70%3D10.1016/0022-3093(86)90040-2
– reference: XingJShangFChenGCeram. Int.20214783301:CAS:528:DC%2BB3cXisVClu7bL10.1016/j.ceramint.2020.11.195
– reference: LiXYangHSongXWuYJ. Non-Cryst. Solids20133792081:CAS:528:DC%2BC3sXhsFKqsLfJ10.1016/j.jnoncrysol.2013.08.014
– reference: Al-BuriahiMSHegazyHHAlresheediFOlarinoyeIOAlgarniHTekinHOSaudiHACeram. Int.20214759511:CAS:528:DC%2BB3cXit1aku7vJ10.1016/j.ceramint.2020.10.168
– reference: ChangKHLeeTHHwaLGChin. J. Phys2003414141:CAS:528:DC%2BD3sXnt12hsrs%3D
– reference: AgostinelliSAllisonJAmakoKApostolakisJAraujoHArcePAsaiMNucl. Instrum. Methods Phys. Res., A20035062501:CAS:528:DC%2BD3sXksF2nsL0%3D10.1016/S0168-9002(03)01368-8
– reference: OmraniROKrimiSVideauJJKhattechIEl JazouliAJemalMJ. Non-Cryst. Solids201439051:CAS:528:DC%2BC2cXlvVGjtb0%3D10.1016/j.jnoncrysol.2014.02.020
– reference: BashterIIAnn. Nucl. Energy19972413891:CAS:528:DyaK2sXmslKlsbc%3D10.1016/S0306-4549(97)00003-0
– reference: W.ZhongjianJZhaodiHYichenHYijianSLijuanJ. Non-Cryst. Solids200835411851:CAS:528:DC%2BD1cXhs1Gms74%3D10.1016/j.jnoncrysol.2007.01.101
– reference: Al-BuriahiMSSriwunkumCArslanHATongucBTBourhamMAAppl. Phys. A2020126681:CAS:528:DC%2BB3cXivVGrug%3D%3D10.1007/s00339-019-3254-9
– reference: MoranaRNon-CrystJSolids2000263–26438210.1016/S0022-3093(99)00678-X
– reference: AbouhaswaASMharebMHAAlalawiAAl-BuriahiMSJ. Non-Cryst. Solids20205431201301:CAS:528:DC%2BB3cXhtVWiurrF10.1016/j.jnoncrysol.2020.120130
– reference: Al-BuriahiMSTongucBPerisanogluUKavazECeram. Int.202046233471:CAS:528:DC%2BB3cXmtVKrtrc%3D10.1016/j.ceramint.2020.03.110
– reference: BoukhrisIKebailiIAl-BuriahiMSAlalawiAAbouhaswaASTongucBCeram. Int.202046244351:CAS:528:DC%2BB3cXhtlait7zL10.1016/j.ceramint.2020.06.226
– reference: KumarASayyedMIDongMXueXJ. Non-Cryst. Solids20184816041:CAS:528:DC%2BC2sXhvFCjtrjF10.1016/j.jnoncrysol.2017.12.001
– reference: HudgensJJBrowRKTallantDRMartinSWJ. Non-Cryst. Solids1998223211:CAS:528:DyaK2sXotVyiu70%3D10.1016/S0022-3093(97)00347-5
– reference: MakishimaAMackenzieJDNon-CrystJSolids1975171471:CAS:528:DyaE2MXkvVertb4%3D10.1016/0022-3093(75)90047-2
– reference: MansourEEl-DamraviGCondensPBMatter.201040521371:CAS:528:DC%2BC3cXjtFKqs7w%3D10.1016/j.physb.2010.01.121
– reference: Al-BuriahiMSEl-AgawanyFISriwunkumCAkyıldırımHArslanHTongucBTEl-MallawanyRRammahYSPhysica B Condens. Matter.20195814119461:CAS:528:DC%2BC1MXisVKqt7zI10.1016/j.physb.2019.411946
– reference: Al-BuriahiMSAlajeramiYSMAbouhaswaASAlalawiANutaroTTongucBJ. Non-Cryst. Solids20205441201711:CAS:528:DC%2BB3cXhtV2rs7jL10.1016/j.jnoncrysol.2020.120171
– volume: 223
  start-page: 21
  year: 1998
  ident: 5966_CR2
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(97)00347-5
– volume: 46
  start-page: 19078
  year: 2021
  ident: 5966_CR41
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– volume: 405
  start-page: 2137
  year: 2010
  ident: 5966_CR4
  publication-title: Matter.
  doi: 10.1016/j.physb.2010.01.121
– volume: 419
  start-page: 45
  year: 2015
  ident: 5966_CR17
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2015.03.034
– volume: 88
  start-page: 553
  year: 2015
  ident: 5966_CR23
  publication-title: Croat. Chem. Acta
  doi: 10.5562/cca2759
– volume: 46
  start-page: 23347
  year: 2020
  ident: 5966_CR42
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.110
– volume: 41
  start-page: 414
  year: 2003
  ident: 5966_CR7
  publication-title: Chin. J. Phys
– volume: 43
  start-page: 102
  year: 1987
  ident: 5966_CR32
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767387099793
– volume: 46
  start-page: 15464
  year: 2020
  ident: 5966_CR43
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– volume: 490
  start-page: 126944
  year: 2021
  ident: 5966_CR10
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.126944
– volume: 126
  start-page: 68
  year: 2020
  ident: 5966_CR44
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3254-9
– volume: 241
  start-page: 1
  year: 1998
  ident: 5966_CR19
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00759-5
– volume: 390
  start-page: 5
  year: 2014
  ident: 5966_CR6
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2014.02.020
– volume: 546
  start-page: 120275
  year: 2020
  ident: 5966_CR30
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120275
– volume: 166
  start-page: 108507
  year: 2020
  ident: 5966_CR48
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108507
– volume: 37
  start-page: 91
  year: 2005
  ident: 5966_CR14
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2004.07.002
– volume: 57
  start-page: 433
  year: 2019
  ident: 5966_CR46
  publication-title: Indian J. Pure Appl. Phys.
– volume: 263–264
  start-page: 382
  year: 2000
  ident: 5966_CR15
  publication-title: Solids
  doi: 10.1016/S0022-3093(99)00678-X
– volume: 129
  start-page: 103511
  year: 2020
  ident: 5966_CR49
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2020.103511
– volume: 47
  start-page: 8330
  year: 2021
  ident: 5966_CR12
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.11.195
– volume: 31
  start-page: 1047
  year: 2021
  ident: 5966_CR26
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01750-z
– volume: 71
  start-page: 103
  year: 1985
  ident: 5966_CR11
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(85)90279-0
– volume: 544
  start-page: 120171
  year: 2020
  ident: 5966_CR27
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120171
– volume: 32
  start-page: 200
  year: 1991
  ident: 5966_CR18
  publication-title: Glass Tech.
– volume: 543
  start-page: 120130
  year: 2020
  ident: 5966_CR40
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120130
– ident: 5966_CR36
  doi: 10.1016/j.saa.2018.08.038
– volume: 481
  start-page: 604
  year: 2018
  ident: 5966_CR24
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.12.001
– volume: 17
  start-page: 147
  year: 1975
  ident: 5966_CR29
  publication-title: Solids
  doi: 10.1016/0022-3093(75)90047-2
– volume: 581
  start-page: 411946
  year: 2019
  ident: 5966_CR39
  publication-title: Physica B Condens. Matter.
  doi: 10.1016/j.physb.2019.411946
– volume: 46
  start-page: 19078
  year: 2020
  ident: 5966_CR34
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– volume: 24
  start-page: 1389
  year: 1997
  ident: 5966_CR38
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/S0306-4549(97)00003-0
– volume: 150
  start-page: 107845
  year: 2021
  ident: 5966_CR35
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107845
– volume: 123
  start-page: 205
  year: 2017
  ident: 5966_CR16
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-016-0739-7
– volume: 354
  start-page: 1185
  year: 2008
  ident: 5966_CR22
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.01.101
– volume: 103
  start-page: 1057
  year: 2020
  ident: 5966_CR13
  publication-title: J. Xu. J. Am. Ceram. Soc.
  doi: 10.1111/jace.16770
– volume: 64
  start-page: 2433
  year: 2003
  ident: 5966_CR1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(03)00286-5
– volume: 56
  start-page: 1127
  year: 2020
  ident: 5966_CR45
  publication-title: J. Aust. Ceram. Soc.
  doi: 10.1007/s41779-020-00457-1
– volume: 47
  start-page: 5951
  year: 2021
  ident: 5966_CR25
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.168
– volume: 79
  start-page: 83
  year: 1986
  ident: 5966_CR20
  publication-title: Solids
  doi: 10.1016/0022-3093(86)90040-2
– volume: 282
  start-page: 147
  year: 2001
  ident: 5966_CR3
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00350-7
– volume: 108
  start-page: 1161
  year: 2012
  ident: 5966_CR5
  publication-title: Anal. Calorim.
  doi: 10.1007/s10973-011-1857-2
– volume: 12
  start-page: 35
  year: 1973
  ident: 5966_CR28
  publication-title: Solids
  doi: 10.1016/0022-3093(73)90053-7
– volume: 47
  start-page: 610
  year: 2006
  ident: 5966_CR21
  publication-title: Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B
– ident: 5966_CR37
– volume: 153
  start-page: 86
  year: 2018
  ident: 5966_CR47
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2018.08.025
– volume: 46
  start-page: 24435
  year: 2020
  ident: 5966_CR33
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.06.226
– volume: 47
  start-page: 3988
  year: 2021
  ident: 5966_CR50
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.263
– volume: 226
  start-page: 45
  year: 1984
  ident: 5966_CR8
  publication-title: Science
  doi: 10.1126/science.226.4670.45
– volume: 506
  start-page: 250
  year: 2003
  ident: 5966_CR31
  publication-title: Nucl. Instrum. Methods Phys. Res., A
  doi: 10.1016/S0168-9002(03)01368-8
– volume: 379
  start-page: 208
  year: 2013
  ident: 5966_CR9
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.08.014
SSID ssj0006438
Score 2.5452135
Snippet For safe immobilization of nuclear waste, lead-iron phosphate glasses are promising as high-level commercial and defense materials. In this research article,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13906
SubjectTerms Attenuation
Barite
Characterization and Evaluation of Materials
Chemistry and Materials Science
Concrete
Elastic properties
Glass
Investigations
Iron
Materials Science
Microhardness
Optical and Electronic Materials
Phosphorus pentoxide
Physics
Radiation
Radiation shielding
Radioactive wastes
Science education
Simulation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgLDAgnqJQkAc2sJQ4duqOFaKqkMpEUbfIiW06tGnUtAMbn8A38iXcm0dbECCx5uHhXsfn3NjnXEKujRGx14kl055rM0CIgKlYa-YnBv3BYqcLhdzgMewPxcNIjipRWF6fdq-3JIuVekPspqRgeKQAW8aETG2THYm1O8ziIe-u1l_AWFU67KGjN-eVVObnMb7C0ZpjftsWLdCmd0D2K5pIu2VeD8mWTY_I3oZ54DF5HuBZuo-3d9RN4YJFdWroi55ONVyc61eK1plpaeVNM_zpPkf3VDpzdAKZpShwo9l4lmdjIJy04NE2PyHD3v3TXZ9VXRJYEki1YEoDQcYyTGEfKuE6wnKBNvZ-4qyxBgtE7QXKuE7YhuIsDDSwHgfUIOQqAQQ7JY10ltozQp0QWsYW8AqAXXhGJxqrZ19aP7GeipvEr4MVJZWFOHaymERr82MMcAQBjooAR6pJblbvZKWBxp9Pt-ocRNXHlEdcBrKNilfeJLd1Xta3fx_t_H-PX5BdXk4N5vkt0ljMl_YSKMcivipm2CdxlczY
  priority: 102
  providerName: Springer Nature
Title Micro‐hardness and gamma‐ray attenuation properties of lead iron phosphate glasses
URI https://link.springer.com/article/10.1007/s10854-021-05966-8
https://www.proquest.com/docview/2535734792
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB41REhwQC0PEUijPXBrV_ixdjYnlFZ5qBUIVQ0KJ2u9u4YDOCYOB278BH4jv4QZe5O0lcp1be9hZjzzze7MNwAnxojU66URV17W5RghQi5TpbivDfGDpZmqOuTOL-LxRPyYRlN34Fa6ssqlT6wctZlpOiM_DaIw6lLbY3BWPHCaGkW3q26ERgOa6IIlJl_Nb4OLy18rX4zxVtZse8TuHQSubcY1z8lIcCpRoBE0MZd_h6Y13vznirSKPMOPsOMgI-vXOv4EH2y-C9t_EAnuwmZVyKnLPbg6pwq71-cX6qYiN8ZUbtiNur9XuDhXT4wINfOa4JsVdBQ_J05VNsvYHeqbUdsbK25nZXGLMJRV6NqW-zAZDn5_H3M3O4HrMJILLhXCZkrOJE2nEllP2EAQub2vM2usobRReaE0WS_uYsoWhwqxUIaAIQ6kxrh2ABv5LLeHwDIhVJRajGIY7oVnlFaUU_uR9bX1ZNoCfym2RDticZpvcZesKZFJ1AmKOqlEncgWfFl9U9S0Gu--3V5qI3G_WJmsDaIFX5caWj_-_25H7-92DFtBbRTc89uwsZg_2s8IPBZpBxpyOOpAsz-6_jnoOFvD1UnQfwPIPNep
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RECocEKWtWF71AU6t1cRxst4DQghYlsdygopb6thOOUA2bBYhbvwEfgk_il_CTB5sqVRuXPOYw3g884098w3AurUy8TpJyLWXtjlGiICrRGvuG0v8YEmqyw65_knUO5OH5-H5BDw2vTBUVtn4xNJR24GhM_KfIgzCNrU9iq38mtPUKLpdbUZoVGZx5O5uMWUrNg92cX03hOjune70eD1VgJsgVCOuNAJKSlsUzW2SaUc6IYn23Teps85SQqW9QNm0E7UxmYkCjSghxVAaCWXQ46PcDzAlg6BDO0p19188P0Z3VXH7EZe4EHWTTt2qp0LJqSCCBt5EXL0OhGN0-8-FbBnnuvMwVwNUtl1Z1CeYcNkCzP5FW7gA02XZqCk-w68-1fM93T9Q7xY5TaYzy_7oqyuND4f6jhF9Z1bRibOcDv6HxODKBim7ROti1GTH8otBkV8g6GUllnfFFzh7F51-hclskLlFYKmUOkwcxkwEF9Kz2mjK4P3Q-cZ5KmmB36gtNjWNOU3TuIzHBMyk6hhVHZeqjlULvr_8k1ckHm9-vdKsRlxv6CIem18LfjQrNH79f2lLb0v7Bh97p_3j-Pjg5GgZZkRlINzzV2ByNLxxqwh5RslaaWcMfr-3YT8DOxAMcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThRBEK7AEogeCILGVYQ-4Ak6zPT0zPYeCFFhAwIbYsRwG3r6Rw4wO-6sMdx4BJ_Hx_FJrJofVkzkxnV--lD9TdVX01VfAWxYK7Ogn8VcB77HMUJEXGVa89BY0gfLvK465E6GycGZ_Hgen8_Ar7YXhsoqW59YOWo7MvSPfFvEUdyjtkex7ZuyiNO9wW7xjdMEKTppbcdp1BA5cjc_MH0rdw73cK_fCjHY__zhgDcTBriJYjXhSiO5pBRG0Qwn6fvSCUkS8KHxzjpLyZUOImV9P-lhYpNEGhmDx7CaCGXQ--O6szDXw6wo6MDc-_3h6ae7OICxXtVKf6QsLkTTstM07qlYciqPoPE3CVf3w-KU6_5zPFtFvcESLDZ0lb2r8fUMZly-DE__EjFchvmqiNSUK_DlhKr7ft_-pE4ucqFM55Z91dfXGi-O9Q0jMc-8FhdnBR0DjEnPlY08u0KsMWq5Y8XlqCwukQKzitm78jmcPYpVX0AnH-XuJTAvpY4zhxEUqYYMrDaa8vkwdqFxgcq6ELZmS00jak6zNa7SqRwzmTpFU6eVqVPVhc27d4pa0uPBp1fb3Uibz7tMp2Dswla7Q9Pb_1_t1cOrrcMCgjo9PhwevYYnosYHD8JV6EzG390b5D-TbK0BGoOLx8b2H4M6EgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro%E2%80%90hardness+and+gamma%E2%80%90ray+attenuation+properties+of+lead+iron+phosphate+glasses&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Al-Buriahi%2C+M.+S.&rft.au=Eke%2C+Canel&rft.au=Alomairy%2C+Sultan&rft.au=Mutuwong%2C+Chalermpon&rft.date=2021-05-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=10&rft.spage=13906&rft.epage=13916&rft_id=info:doi/10.1007%2Fs10854-021-05966-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_021_05966_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon