Explaining pre-emptive acclimation by linking information to plant phenotype

We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from indivi...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 73; no. 15; pp. 5213 - 5234
Main Authors Aphalo, Pedro J, Sadras, Victor O
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 03.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from individual cues and signals but instead from their joint multivariate properties such as correlations. If molecular signalling has evolved to extract such information, the joint multivariate properties of the environment must be encoded in the genome, epigenome, and phenome. We contend that multivariate complexity explains why extrapolating from experiments done in artificial contexts into natural or agricultural systems almost never works for characters under complex environmental regulation: biased relationships among the state variables in both time and space create a mismatch between the evolutionary history reflected in the genotype and the artificial growing conditions in which the phenotype is expressed. Our model can generate testable hypotheses bridging levels of organization. We describe the model and its theoretical bases, and discuss its implications. We illustrate the hypotheses that can be derived from the model in two cases of pre-emptive acclimation based on correlations in the environment: the shade avoidance response and acclimation to drought.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0022-0957
1460-2431
1460-2431
DOI:10.1093/jxb/erab537