Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure
In this Letter, we study a new kind of organic polymer waveguide numerically and experimentally by combining an ultrathin (10-50 nm) layer of compactly packed CdSe/ZnS core/shell colloidal quantum dots (QDs) sandwiched between two cladding poly(methyl methacrylate) (PMMA) layers. When a pumping lase...
Saved in:
Published in | Optics letters Vol. 39; no. 16; p. 4962 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.08.2014
|
Online Access | Get more information |
Cover
Loading…
Summary: | In this Letter, we study a new kind of organic polymer waveguide numerically and experimentally by combining an ultrathin (10-50 nm) layer of compactly packed CdSe/ZnS core/shell colloidal quantum dots (QDs) sandwiched between two cladding poly(methyl methacrylate) (PMMA) layers. When a pumping laser beam is coupled into the waveguide edge, light is mostly confined around the QD layer, improving the efficiency of excitation. Moreover, the absence of losses in the claddings allows the propagation of the pumping laser beam along the entire waveguide length; hence, a high-intensity photoluminescence (PL) is produced. Furthermore, a novel fabrication technology is developed to pattern the PMMA into ridge structures by UV lithography in order to provide additional light confinement. The sandwich-type waveguide is analyzed in comparison to a similar one formed by a PMMA film homogeneously doped by the same QDs. A 100-fold enhancement in the waveguided PL is found for the sandwich-type case due to the higher concentration of QDs inside the waveguide. |
---|---|
ISSN: | 1539-4794 |
DOI: | 10.1364/OL.39.004962 |