Geometric effects on thermoelastic damping in MEMS resonators

The effects of geometry on the energy dissipation induced by thermoelastic damping in MEMS resonators are investigated numerically using a finite element formulation. The perturbation analysis is applied to derive a linear eigenvalue equation for the exponentially decaying rate of the mechanical osc...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 309; no. 3; pp. 588 - 599
Main Author Yi, Y.B.
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 22.01.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of geometry on the energy dissipation induced by thermoelastic damping in MEMS resonators are investigated numerically using a finite element formulation. The perturbation analysis is applied to derive a linear eigenvalue equation for the exponentially decaying rate of the mechanical oscillation. The analysis also involves a Fourier method that reduces the dimensionality of the problem and considerably improves the computational efficiency. The method is first validated by comparing the two-dimensional model to the existing analytical solutions for a simply supported beam system, and then it is extended to a three-dimensional axisymmetric geometry to obtain the energy loss as a function of the geometric parameters in a silicon ring resonator. The computational results reveal that there is a peak value for the resonant frequency when the radial width of the ring varies. In addition, the quality factor ( Q-factor) decreases with the radial width as a monotonic function.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2007.07.055