Comparative research on the optical properties of three surface patterning ZnO ordered arrays

We fabricate three surface patterning zinc oxide(ZnO) ordered arrays on glass substrates by using nanosphere lithography technique and dc magnetron sputtering technique. The crescent, tube and honeycomb surface morphologies of the samples are observed by scanning electron microscopy. The transmittan...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 12; pp. 564 - 567
Main Author 侯凯 朱亚彬 乔璐
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/12/127703

Cover

More Information
Summary:We fabricate three surface patterning zinc oxide(ZnO) ordered arrays on glass substrates by using nanosphere lithography technique and dc magnetron sputtering technique. The crescent, tube and honeycomb surface morphologies of the samples are observed by scanning electron microscopy. The transmittance, fluorescence and confocal Raman spectra of the sample are measured. Obviously, when the angle between the plume and the substrate is 90°, the honeycomb arrays have a better transmission. Additionally, the PL intensity of honeycomb arrays is superior. With the increasing of the angle between the substrate and the sputtering plume, the fluorescence peak shows blue shift. The Raman peak located at438 cm^-1belongs to ZnO E2(high) mode, which corresponds to the characteristic band of the hexagonal wurtzite phase.The tube arrays have the best Raman spectrum intensity.
Bibliography:11-5639/O4
ZnO ordered arrays,transmittance,fluorescence spectroscopy,Raman spectroscopy
We fabricate three surface patterning zinc oxide(ZnO) ordered arrays on glass substrates by using nanosphere lithography technique and dc magnetron sputtering technique. The crescent, tube and honeycomb surface morphologies of the samples are observed by scanning electron microscopy. The transmittance, fluorescence and confocal Raman spectra of the sample are measured. Obviously, when the angle between the plume and the substrate is 90°, the honeycomb arrays have a better transmission. Additionally, the PL intensity of honeycomb arrays is superior. With the increasing of the angle between the substrate and the sputtering plume, the fluorescence peak shows blue shift. The Raman peak located at438 cm^-1belongs to ZnO E2(high) mode, which corresponds to the characteristic band of the hexagonal wurtzite phase.The tube arrays have the best Raman spectrum intensity.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/12/127703