HCO+ Imaging of Comet Hale-Bopp (C/1995 O1)

The HCO+ J = 1-0 rotational transition at 89.189 GHz has been mapped in comet Hale-Bopp (C/1995 O1) over a total of 38 individual days spanning the period 1997 March 10-June 20 with the Five College Radio Astronomy Observatory 14 m antenna. HCO+ is detectable over an extended region of the comet, wi...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 497; no. 2 Pt 2; pp. L117 - L121
Main Authors Lovell, Amy J, Schloerb, F. Peter, Dickens, James E, DeVries, Christopher H, Senay, Matthew C, Irvine, William M
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center IOP Publishing 20.04.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The HCO+ J = 1-0 rotational transition at 89.189 GHz has been mapped in comet Hale-Bopp (C/1995 O1) over a total of 38 individual days spanning the period 1997 March 10-June 20 with the Five College Radio Astronomy Observatory 14 m antenna. HCO+ is detectable over an extended region of the comet, with the peak emission commonly located 50,000-100,000 km in the antisolar direction. Maps made throughout the apparition show significant variability in the structure of the HCO+ coma, sometimes on timescales of several hours. The HCO+ brightness is usually depressed at the nucleus position, and on some occasions, the emission is spread into a ring around the position of the nucleus. Individual spectra within the maps display broad (approximately 4 km s-1) lines redshifted by 1-2 km s-1 or more from the nominal velocity of the nucleus, with the redshift typically increasing in the antisolar direction. The spectra and maps may be generally explained by models in which the ions are accelerated tailward at a rate on the order of 10 cm s-2, provided that HCO+ is destroyed within 50,000-100,000 km of the nucleus.
Bibliography:GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1538-4357
0004-637X
1538-4357
DOI:10.1086/311288