Analysis of viscoelastic fluid flow with temperature dependent properties in plane Couette flow and thin annuli
The steady state flow in very thin annuli has been studied analytically for the case where the annular gap is much smaller than the radius of the inner cylinder and for the outer cylinder rotating at constant angular speed and the inner cylinder at rest. The cylinders were subjected to two different...
Saved in:
Published in | Applied mathematical modelling Vol. 34; no. 4; pp. 919 - 930 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Inc
01.04.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The steady state flow in very thin annuli has been studied analytically for the case where the annular gap is much smaller than the radius of the inner cylinder and for the outer cylinder rotating at constant angular speed and the inner cylinder at rest. The cylinders were subjected to two different thermal boundary conditions. The exponential effect of temperature on the relaxation time and the viscosity coefficient was accounted into the governing differential equations using Nahme’s law. Effects of viscous dissipation as well as
εDe
2 (viscoelastic index for SPTT constitutive equation) on the dimensionless velocity and temperature profiles have been investigated. Results show that while the properties of the fluid depend on temperature, the velocity and temperature profiles are different compared to those obtained with constant physical properties. The Nahme–Griffith number increases whereas
εDe
2 as a viscoelastic index decreases when temperature dependent physical properties are considered. In addition, the results indicate that the viscous dissipation has a sensible effect on heat transfer and the Nusselt number decreases with an increase in the Nahme–Griffith number. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2009.07.001 |