Indentation of elastically soft and plastically compressible solids

The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calcu- lations are carried out for indentation of a perfectly stickin...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Sinica Vol. 31; no. 4; pp. 473 - 480
Main Authors Needleman, A., Tvergaard, V., Van der Giessen, E.
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences 01.08.2015
Subjects
Online AccessGet full text
ISSN0567-7718
1614-3116
DOI10.1007/s10409-015-0467-9

Cover

More Information
Summary:The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calcu- lations are carried out for indentation of a perfectly sticking rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plas- tic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce the ratio of nomi- nal indentation hardness to yield strength. A linear relation is found between the nominal indentation hardness and the log- arithm of the ratio of Young's modulus to yield strength, but with a different coefficient than reported in previous studies. The nominal indentation hardness decreases rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction in the hydrostatic stress level in the material below the indenter.
Bibliography:Plasticity; Compressibility; Indentation;Finite element analysis
11-2063/O3
The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calcu- lations are carried out for indentation of a perfectly sticking rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plas- tic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce the ratio of nomi- nal indentation hardness to yield strength. A linear relation is found between the nominal indentation hardness and the log- arithm of the ratio of Young's modulus to yield strength, but with a different coefficient than reported in previous studies. The nominal indentation hardness decreases rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction in the hydrostatic stress level in the material below the indenter.
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-015-0467-9